Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Study on Properties of Blue-Brick Masonry Materials for Historical Buildings

    Shaochun Ma1,2,*, Lin Wang1, Peng Bao1,*

    Journal of Renewable Materials, Vol.10, No.7, pp. 1961-1978, 2022, DOI:10.32604/jrm.2022.018755

    Abstract There are a large number of historic buildings which were mainly made of blue-brick masonry in today’s world. However, for the natural and man-made reasons, these historic buildings have been damaged in different degrees. In order to protect historic buildings more scientifically and learn about the preservation state of existing historic buildings, it is necessary to ascertain the material properties of blue brick in historic buildings. The article takes the blue bricks of historical buildings in Kaifeng area of the Central Plains as an example to study. Through the analysis of physical properties, X-ray fluorescence spectroscopy, X-ray diffraction and scanning… More > Graphic Abstract

    Study on Properties of Blue-Brick Masonry Materials for Historical Buildings

  • Open Access


    Development of a Soil Stabilizer for Road Subgrade Based on Original Phosphogypsum

    Zenghuan Gu1, Aiguo Fang2, Sudong Hua1,*, Qingzhou Zhao2, Lidong Sun2, Fan Xia2, Liying Qian3, Xiaojian Ren3

    Journal of Renewable Materials, Vol.9, No.2, pp. 253-268, 2021, DOI:10.32604/jrm.2021.011912

    Abstract The research used industrial by-products original phosphogypsum (PG) as the main raw material, slag (SG) and Portland cement (PC) as auxiliary materials, and the optimal additive amount was determined according to the compressive strength value of the sample. Comprehensively evaluate the water resistance and volume stability of the samples, and determine the best formula for new roadbed stabilized materials. The results showed that when the weight ratio of PG, slag and cement was OPG:SG:PC = 6:3:1, and mixed with 5% micro silica fume (MSF) and 3‰ hydroxypropyl methyl cellulose (HPMC), the sample’s comprehensive performance was the best, specifically, the sample’s… More >

Displaying 1-10 on page 1 of 2. Per Page