Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access

    ARTICLE

    Enhanced performance of tin sulfide thin-film solar cells via silicon substrate integration: a combined experimental and simulation study

    O. Mekhbia, K. Kamlib,*, Z. Hadefb, O. Kamlic, M. Bouatrousd, N. Houaidjie, L. Zighedh

    Chalcogenide Letters, Vol.22, No.4, pp. 331-339, 2025, DOI:10.15251/CL.2025.224.331

    Abstract This work presents a hybrid study that employs Ultrasonic Spray method for the deposition of SnS absorber films and SCAPS-1D simulation method for the analysis of various solar cell topologies. Different deposition times have been employed to optimize structural, optics, and electrical properties. To evaluate their potential as absorber layers for solar cells, the films were analyzed by using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and tested for electrical performance. Complementary numerical simulations were carried out with SCAPS-1D in modeling ZnO:Al/i-ZnO/SnS2/SnS solar cell structures. Results showed that optimized SnS thickness of 2.5 µm and high carrier More >

  • Open Access

    ARTICLE

    Quaternary chalcogenides as transport layers in solid-state DSSC: a feasibility study

    M. H. Ibrahim*, M. R. Salim, M. Y. Mohd Nor, A. S. Abdullah, A. I. Azmi

    Chalcogenide Letters, Vol.22, No.6, pp. 551-560, 2025, DOI:10.15251/CL.2025.226.551

    Abstract Four chalcogenide compounds: copper zinc germanium sulfide (CZGS), copper zinc germanium selenide (CZGSe), copper barium tin sulfide (CBTS), and copper manganese tin sulfide (CMTS) were proposed as hole transport layer (HTL) in dye-sensitized solar cell (DSSC). The DSSC structure comprises fluorine-doped tin oxide (FTO) as the top electrode, zinc oxysulfide (ZnOS) as the electron transport layer (ETL), N719 dye as the light absorber, chalcogenides as the HTL, and gold (Au) as the back electrode. By utilizing the SCAPS 1- D simulator, the optimal thicknesses for ZnOS, HTL candidates and N719 dye were determined to be More >

  • Open Access

    ARTICLE

    Modeling and optimization of a CZT(S,Se)-based tandem solar cell

    B. Yassine, B. Tahar*, G. Fathi, B. Meriem, B. Ibtissem

    Chalcogenide Letters, Vol.22, No.7, pp. 637-648, 2025, DOI:10.15251/CL.2025.227.637 - 17 December 2025

    Abstract In this paper, we designed a two-junction (tandem) solar cell model (tandem solar cell), consisting of an top and bottom subcell with absorber layers of Cu2SnZnS4 (CZTS) and Cu2SnZnSe4 (CZTSe) materials, respectively, for each subcell with a ZnS buffer layer and a ZnO window layer. This model was validated using the SCAPS-1D numerical simulation program. We also optimized the performance of the tandem cell as a whole using the simulation by studying the effect of the thickness of the absorber layer of the top subcell and the thickness of the absorber layer of the bottom subcell More >

  • Open Access

    ARTICLE

    Boosting power efficiency in polycrystalline silicon solar cells: antimony selenide sputter coating with advanced optical, electrical, and thermal insights

    R. M. Reddya, S. Chiragb, T. Anuc, A. R. Venkataramanand, S. Karthikeyane,*, D. Palaniswamyf, E. Venugopal Gouda, N. Dineshbabug, T. Thirugnanasambandhamh

    Chalcogenide Letters, Vol.22, No.7, pp. 615-624, 2025, DOI:10.15251/CL.2025.227.615

    Abstract Solar cells can transform light energy into electrical energy, possibly removing the need for fossil fuel energy resources. Reflection loss in solar cells is a factor contributing to diminished power conversion efficiency, which can be solved through using antireflective coatings on the cell surface. The present research primarily focuses on the development and application of antireflection coatings on the top surface of silicon solar cells. Sb2Se3 was deposited over multi-crystalline Si cells with different durations from 15 to 60 minutes. The influence of thin film Sb2Se3 coated cells was investigated through optical, current, voltage and thermal… More >

  • Open Access

    ARTICLE

    Structural, optical and electrical properties of NiO thin films for hole transport layer in chalcogenide and perovskite materials based solar cells

    M. Abbasa, M. Haseeb-u-Rehmana, M. Sohailb, G. H. Tariqa,*

    Chalcogenide Letters, Vol.22, No.7, pp. 561-577, 2025, DOI:10.15251/CL.2025.227.561

    Abstract This work presents the fabrication of NiO thin films via versatile sol-gel spin coating method and investigation of annealing effects on their physical properties. After the deposition process, the NiO thin films underwent annealing process at different values of temperatures ranging from 200°C to 350°C for one hour duration. XRD patterns confirmed the polycrystalline nature, along the preferred orientations (110) and (101) planes. Nanoparticles in NiO thin films demonstrated an increase in crystallite size with rising annealing temperatures, reaching a maximum size of 49 nm at annealing temperature 300°C. FTIR patterns revealed Ni-O bands at… More >

  • Open Access

    ARTICLE

    Sonochemically synthesised nitrogen-doped CdS nanoparticles for photovoltaic applications

    S. R. Ahmeda,*, M. V. V. K. Srinivas Prasadb, K. Keerthivasanc

    Chalcogenide Letters, Vol.22, No.8, pp. 679-691, 2025, DOI:10.15251/CL.2025.228.679

    Abstract This work used a sonication-aided approach to make Cadmium sulfide nanoparticles and Nitrogen-doped CdS nanoparticles. Doping Nitrogen into CdS NPs enhances the material's electrical, chemical, and structural properties by altering its surface area and functional sites. XRD, FTIR, SEM/EDX, TGA, UV-Vis, and PSA are used to evaluate the characteristic features of CdS NPs. The photovoltaic responses of the prepared CdS and CdS-N NPs were evaluated by electrochemical impedance and IV analysis. The obtained XRD data confirms that nitrogen doping significantly changes the crystal size of CdS NPs. The XPS spectrum depicts the presence of trace More >

  • Open Access

    ARTICLE

    Cu2MgSnS4 thin films: a promising absorber material for next-generation solar cells

    Y. B. K. Kumara,, S. G. Prasadb, A. S. S. Smithac, S. M. Naidud, G. S. Babuc, P. U. Bhaskare, U. Chalapathif,

    Chalcogenide Letters, Vol.22, No.9, pp. 847-854, 2025, DOI:10.15251/CL.2025.229.847

    Abstract Cu2MgSnS4 thin films have emerged as potential candidates for use in photovoltaic applications owing to their direct band gap properties. These quaternary compounds are fabricated through the spray pyrolysis method at 175 °C, utilizing two different carrier gases, such as air and nitrogen. After pyrolysis, deposited films are annealed at 450 °C for 1 hour. Structural analysis confirms the films exhibit a tetragonal kesterite structure. Using nitrogen as the carrier gas results in a larger crystallite size, accompanied by a reduction in both the dislocation density and microstrain. Raman spectroscopy further validates phase purity. Surface morphology analysis indicates More >

  • Open Access

    ARTICLE

    Advanced chalcogenide GaS3 coatings for reducing reflective loss and boosting efficiency in silicon photovoltaics

    R. M. Reddya, J. A. Prakashb, A. Tonkc, S. Karvendhand, G. Sivaramane, D. K. Patelf, S. P. Dillibabug, S. Karthikeyanh,*, T. Thirugnanasambandhami

    Chalcogenide Letters, Vol.22, No.9, pp. 797-806, 2025, DOI:10.15251/CL.2025.229.797

    Abstract The current situation necessitates advancements in renewable energy as an alternative for conventional energy sources. Reflection loss in solar cells is a contributing factor to diminish the power conversion efficiency, which can be reduced by employing antireflective coatings. The current investigation focuses on improvement in photocurrent generation of monocrystalline silicon solar cells by employing Gallium sulfide (GaS3) as anti-reflective coatings (ARC). The RF sputter coating method has been used for GaS3 deposition at different coating durations (10, 20, 30, and 40 minutes). The transmittance, reflectance, I-V characteristics, electrical properties, and thermal behaviour of the Ga2S3 coatings… More >

  • Open Access

    ARTICLE

    Performance evaluation of CdTe-based heterojunction solar cell with IGZO-based window layer and electron transport layer

    R. K. Mishraa,*, M. N. Anwara, M. A. Hasanb

    Chalcogenide Letters, Vol.22, No.10, pp. 871-882, 2025, DOI:10.15251/CL.2025.2210.871

    Abstract This study introduces a novel approach to enhancing the performance of CdTe/IGZO-based heterojunction solar cells by utilizing IGZO as both a window layer and an electron transport layer (ETL). A comprehensive simulation using SCAPS-1D was conducted to evaluate the impact of various transparent conductive oxides (TCOs), including ITO, SnO, ZnO, and FTO, on key photovoltaic parameters such as power conversion efficiency (PCE), open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF). The research also explores the critical role of transport layers (HTL/ETL) and their material properties, band alignment, carrier mobility, and defect density, in More >

  • Open Access

    ARTICLE

    Thin-Film Solar Cell Based on Sb2(Sx,Se1−x)3 Solid Solution Films

    T. M. Razykov1, K. M. Kuchkarov1, R. T. Yuldoshov1, M. P. Pirimmatov1, R. R. Khurramov1, D. Z. Isakov1, M. A. Makhmudov1, A. Matmuratov1, J. G. Bekmirzoyev1, A. N. Olimov2

    Chalcogenide Letters, Vol.22, No.11, pp. 959-964, 2025, DOI:10.15251/CL.2025.2211.959

    Abstract This work presents the results of investigating the photovoltaic characteristics of Sb2(SxSe1−x)3 thin film solar cells manufactured on glass substrates with molybdenum coating using the chemical molecular beam deposition method. Illuminated IV and spectral response measurements on Sb2(SxSe1−x)3 alloy films show that the device with S/(S + Se) = 0.6 delivers the best performance, reaching 6.47% power-conversion efficiency with VOC = 523 mV, JSC = 27.2 mA cm−2 , and a fill factor of 46.71%. More >

Displaying 1-10 on page 1 of 59. Per Page