Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (126)
  • Open Access

    ARTICLE

    A New Efficient Matrix Algorithm for a 3D Component Mode Synthesis (CMS) Model Used on Sound Transmission Problems

    M. D. C. Magalhaes1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.6, pp. 441-465, 2015, DOI:10.3970/cmes.2015.105.441

    Abstract The main goal of this study is to present an alternative and more efficient algorithm for a three-dimensional Component Mode Synthesis model to be used on sound transmission problems. The influence of fluid-structure interaction on airborne sound transmission problems is analysed using this model, which is based on simple volume geometries. In principle, the same procedure can also be applied when the component modes are obtained from alternative numerical techniques. The modal behaviour of acoustic volumes and a partition is implemented in two steps. The novelty of this alternative model is that the structural modes More >

  • Open Access

    ARTICLE

    Depolymerization of Post-Consumer Polylactic Acid Products

    David Grewell1,*, Gowrishankar Srinivasan1, Eric Cochran2

    Journal of Renewable Materials, Vol.2, No.3, pp. 157-165, 2014, DOI:10.7569/JRM.2014.634112

    Abstract Presented in this study is a novel recycling strategy for poly(lactic acid) (PLA) in which the depolymerization is rapidly promoted by the base-catalyzed hydrol-/alcohol-ysis of the terminal ester bonds under mild conditions. Post-consumer PLA water bottles were cut into approximately 6 x 2 mm plastic chips and heated to 50–60o C in water, ethanol, or methanol as the depolymerization medium. A variety of carbonate salts and alkaline metal oxides were screened as potential catalysts. High-power ultrasound was also investigated as a means to accelerate the PLA decomposition. Both mass loss and HPLC analysis of the More >

  • Open Access

    ARTICLE

    Sound Propagation Analysis on Sonic Crystal Elastic Structures using the Method of Fundamental Solutions (MFS)

    P.G. Santos1, J. Carbajo2, L. Godinho3, J. Ramis2

    CMC-Computers, Materials & Continua, Vol.43, No.2, pp. 109-136, 2014, DOI:10.3970/cmc.2014.043.109

    Abstract The study of periodic structures, namely sonic crystals, for sound attenuation purposes has been a topic of intense research in the last years. Some efficient methods are available in literature to solve the problem of sound propagation in the presence of this kind of structures such as those based in the Multiple Scattering Theory (MST) or the Finite Element Method (FEM). In this paper a solution based on the Method of Fundamental Solutions (MFS) which presents advantages, namely in computational discretization and calculation costs, is presented. The proposed formulation considers the presence of elastic ring More >

  • Open Access

    ARTICLE

    Sound Power Radiation Sensitivity and Variability Using a 'Hybrid' Numerical Model

    Max de Castro Magalhaes1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.4, pp. 263-281, 2012, DOI:10.3970/cmes.2012.089.263

    Abstract The main objective is to develop a 'hybrid' numerical method for predicting sound power radiated from honey-comb panels and analyze the sensitivity and variability of it to different boundary conditions. The honey-comb panels are mainly used on the aerospace, mechanical and civil engineering design. The method used herein is a combination of the Finite Element Method and the Jinc Function Approach. The original contribution of this paper is therefore to show the sensitivity of sound power radiated from a honey-comb panel using a 'hybrid' method which is simple and efficient on tackling sound radiation problems… More >

  • Open Access

    ARTICLE

    The Mode Relation for Open Acoustic Waveguide Terminated by PML with Varied Sound Speed

    Jianxin Zhu, Zengsi Chen, Zheqi Shen

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 547-560, 2012, DOI:10.3970/cmes.2012.083.547

    Abstract An acoustic waveguide with continuously varying sound speed is discussed in this paper. When the waveguide is open along the depth, the perfectly matched layer (PML) is used to terminate the infinite domain. Since the sound speed is gradually varied, the density is assumed as constant in each fluid layer. For this waveguide, it is shown that the mode relation is derived by using the differential transfer matrix method (DTMM). To solve leaky and PML modes, Newton's iteration is applied, and Chebyshev pseudospectral method is used for obtaining initial guesses. The solutions are with high More >

  • Open Access

    ARTICLE

    An Adaptive Extended Kalman Filter Incorporating State Model Uncertainty for Localizing a High Heat Flux Spot Source Using an Ultrasonic Sensor Array

    M.R. Myers1, A.B. Jorge2, D.E. Yuhas3, D.G. Walker1

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.3, pp. 221-248, 2012, DOI:10.3970/cmes.2012.083.221

    Abstract An adaptive extended Kalman filter is developed and investigated for a transient heat transfer problem in which a high heat flux spot source is applied on one side of a thin plate and ultrasonic pulse time of flight is measured between spatially separated transducers on the opposite side of the plate. The novel approach is based on the uncertainty in the state model covariance and leverages trends in the extended Kalman filter covariance to drive changes to the state model covariance during convergence. This work is an integral part of an effort to develop a… More >

  • Open Access

    ABSTRACT

    Intravascular Ultrasound (IVUS)-Based Computational Modeling and Planar Biaxial Artery Material Properties for Human Coronary Plaque Vulnerability Assessment

    Mingchao Cai, Chun Yang, Mehmet H. Kural, Richard Bach, David Muccigrosso, Deshan Yang, Jie Zheng, Kristen L. Billiar, Dalin Tang

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 97-104, 2011, DOI:10.3970/icces.2011.019.097

    Abstract Image-based computational modeling has been introduced for vulnerable atherosclerotic plaques to identify critical mechanical conditions which may be used for better risk assessment and rupture predictions. In vivo patient-specific coronary plaque models are lagging due to limitations on non-invasive image resolution, flow data, and vessel material properties. We propose a procedure where intravascular ultrasound (IVUS) imaging, biaxial mechanical testing and computational modeling are combined together to acquire better and more complete plaque data and make more accurate plaque vulnerability assessment and predictions. More >

  • Open Access

    ARTICLE

    An Improved Hierarchical ACA Technique for Sound Absorbent Materials

    A. Brancati1, M. H. Aliabadi1, A. Milazzo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.1, pp. 1-24, 2011, DOI:10.3970/cmes.2011.078.001

    Abstract This paper presents an improved adaptive cross approximation (ACA) approach developed in conjunction with the Hierarchical format matrix and the GMRES solver. A novel scheme to generate the cluster tree (based upon preliminary considerations of the prescribed boundary conditions) and an improved ACA algorithm (approximating the system matrix for mixed Robin conditions) are described. The asymptotic smoothness property of a kernel generated by a linear combination of two asymptotic smooth kernels is demonstrated. Numerical results show the new approach to be up to 50% faster than the conventional ACA approach. More >

  • Open Access

    ARTICLE

    Changes in Triphasic Mechanical Properties of Proteoglycan-Depleted Articular Cartilage Extracted from Osmotic Swelling Behavior Monitored Using High-Frequency Ultrasound

    Q Wang*, YP Zheng∗,†, HJ Niu∗,‡

    Molecular & Cellular Biomechanics, Vol.7, No.1, pp. 45-58, 2010, DOI:10.3970/mcb.2010.007.045

    Abstract This study aims to obtain osmosis-induced swelling strains of normal and proteoglycan (PG) depleted articular cartilage using an ultrasound system and to investigate the changes in its mechanical properties due to the PG depletion using a layered triphasic model. The swelling strains of 20 cylindrical cartilage-bone samples collected from different bovine patellae were induced by decreasing the concentration of bath saline and monitored by the ultrasound system. The samples were subsequently digested by a trypsin solution for approximately 20 min to deplete proteoglycans, and the swelling behaviors of the digested samples were measured again. The… More >

  • Open Access

    ARTICLE

    Unsupervised Time-series Fatigue Damage State Estimation of Complex Structure Using Ultrasound Based Narrowband and Broadband Active Sensing

    S.Mohanty1, A. Chattopadhyay2, J. Wei3, P. Peralta4

    Structural Durability & Health Monitoring, Vol.5, No.3, pp. 227-250, 2009, DOI:10.3970/sdhm.2009.005.227

    Abstract This paper proposes unsupervised system identification based methods to estimate time-series fatigue damage states in real-time. Ultrasound broadband input is used for active damage interrogation. Novel damage index estimation techniques based on dual sensor signals are proposed. The dual sensor configuration is used to remove electrical noise, as well as to improve spatial resolution in damage state estimation. The scalar damage index at any particular damage condition is evaluated using nonparametric system identification techniques, which includes an empirical transfer function estimation approach and a correlation analysis approach. In addition, the effectiveness of two sensor configurations More >

Displaying 111-120 on page 12 of 126. Per Page