Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

    Qianyu Zhang1,2, Antonio Pizzi3, Hong Lei1,2,*, Xuedong Xi1,2,*, Ming Cao1,2, Long Cao1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1439-1450, 2023, DOI:10.32604/jrm.2022.023535

    Abstract Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves, reasonable price and outstanding environmental features. But their poor water resistance, low bonding strength and intolerance to mold are major drawbacks, so that proper modification before use is essential. Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives, which can effectively improve the bonding strength and water resistance of the adhesive. Equally, glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive. In the work presented… More > Graphic Abstract

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

  • Open Access

    ARTICLE

    Soy Protein Isolate Non-Isocyanates Polyurethanes (NIPU) Wood Adhesives

    Xinyi Chen1,2, Antonio Pizzi1,*, Xuedong Xi1,2, Xiaojian Zhou2, Emmanuel Fredon1, Christine Gerardin3

    Journal of Renewable Materials, Vol.9, No.6, pp. 1045-1057, 2021, DOI:10.32604/jrm.2021.015066

    Abstract Soy-protein isolate (SPI) was used to prepare non-isocyanate polyurethane (NIPU) thermosetting adhesives for wood panels by reacting it with dimethyl carbonate (DMC) and hexamethylene diamine. Both linear as well as branched oligomers were obtained and identified, indicating how such oligomer structures could further cross-link to form a hardened network. Unusual structures were observed, namely carbamic acid-derived urethane linkages coupled with lactam structures. The curing of the adhesive was followed by thermomechanical analysis (TMA). It appeared to follow a two stages process: First, at a lower temperature (maximum 130°C), the growth of linear oligomers occurred, finally forming a physically entangled network.… More >

  • Open Access

    ARTICLE

    ZnSe Nanoparticles Reinforced Biopolymeric Soy Protein Isolate Film

    Rakesh Kumar1,*, Reshma Praveen1, Shikha Rani1, K. Sharma2, K. P. Tiwary3,*, K. Dinesh Kumar4

    Journal of Renewable Materials, Vol.7, No.8, pp. 749-761, 2019, DOI:10.32604/jrm.2019.06286

    Abstract ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride, selenium powder and ethylene diamine. The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as well as morphological characterization was done by scanning electron microscope (SEM). The crystallite size after synthesis was obtained around 30 nm for pure ZnSe nanocrystallites. However, from SEM micrograph, agglomerated ZnSe nanoparticles of irregular shapes were observed. The as-synthesized ZnSe nanoparticles at different contents (1 to 5% w/w w.r.t SPI) were incorporated into soy protein isolate (SPI) to produce reinforced SPI films by solution casting method. The ZnSe nanoparticles incorporated… More >

  • Open Access

    ARTICLE

    Soy Protein Isolate Film by Incorporating Mandelic Acid as Well as Through Fermentation Mediated by Bacillus Subtilis

    Rakesh Kumar1,*, Priya Rani1, K. Dinesh Kumar2

    Journal of Renewable Materials, Vol.7, No.2, pp. 103-115, 2019, DOI:10.32604/jrm.2019.00027

    Abstract Soy protein isolate (SPI) biopolymeric films were prepared by adding different contents of mandelic acid (1 to 5% wrt SPI) to glycerol plasticized SPI by solution casting method. Also, SPI was fermented by Bacillus subtilis to get fermented SPI films by solution casting. Molecular mass determination of mandelic acid incorporated and fermented SPI films was carried out by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Mandelic acid incorporated and fermented SPI films were characterized by Fourier-transform infrared spectroscopy (FT-IR), dynamic mechanical analysis (DMA), tensile strength, water uptake and optical transmittance studies. Results indicated that incorporation of mandelic acid in SPI resulted… More >

Displaying 1-10 on page 1 of 4. Per Page