Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (220)
  • Open Access

    ARTICLE

    Image Inpainting Detection Based on High-Pass Filter Attention Network

    Can Xiao1,2, Feng Li1,2,*, Dengyong Zhang1,2, Pu Huang1,2, Xiangling Ding3, Victor S. Sheng4

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1145-1154, 2022, DOI:10.32604/csse.2022.027249 - 09 May 2022

    Abstract Image inpainting based on deep learning has been greatly improved. The original purpose of image inpainting was to repair some broken photos, such as inpainting artifacts. However, it may also be used for malicious operations, such as destroying evidence. Therefore, detection and localization of image inpainting operations are essential. Recent research shows that high-pass filtering full convolutional network (HPFCN) is applied to image inpainting detection and achieves good results. However, those methods did not consider the spatial location and channel information of the feature map. To solve these shortcomings, we introduce the squeezed excitation blocks More >

  • Open Access

    ARTICLE

    Seed Setting and Its Spatial Characteristics in Tartary Buckwheat (Fagopyrum tataricum)

    Dabing Xiang1,#, Yue Song1,#, Chao Song2, Yan Wan1, Xueling Ye1, Changying Liu1, Chenggang Liang3, Gang Zhao1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.8, pp. 1659-1669, 2022, DOI:10.32604/phyton.2022.020338 - 14 April 2022

    Abstract A low seed-setting rate is the main limiting factor influencing Tartary buckwheat production under high-yield cultivation conditions. To investigate the seed setting and its spatial characteristics, two Tartary buckwheat cultivars (high seed-setting rate cultivar Qianku 3; low seed-setting rate cultivar Liuku 3) were compared by a two-year field trial in 2017 and 2018. The results showed that the Tartary buckwheat underwent simultaneous flowering and fruiting. Flowers, generated from branch, were still blooming during the mature stage of grains on stem, which resulting in a greater number of flowers and grains on the branch than those… More >

  • Open Access

    ARTICLE

    Underwater Terrain Image Stitching Based on Spatial Gradient Feature Block

    Zhenzhou Wang1, Jiashuo Li1, Xiang Wang1,*, Xuanhao Niu2

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4157-4171, 2022, DOI:10.32604/cmc.2022.027017 - 29 March 2022

    Abstract At present, underwater terrain images are all strip-shaped small fragment images preprocessed by the side-scan sonar imaging system. However, the processed underwater terrain images have inconspicuous and few feature points. In order to better realize the stitching of underwater terrain images and solve the problems of slow traditional image stitching speed, we proposed an improved algorithm for underwater terrain image stitching based on spatial gradient feature block. First, the spatial gradient fuzzy C-Means algorithm is used to divide the underwater terrain image into feature blocks with the fusion of spatial gradient information. The accelerated-KAZE (A-KAZE)… More >

  • Open Access

    ARTICLE

    A Map Construction Method Based on the Cognitive Mechanism of Rat Brain Hippocampus

    Naigong Yu*, Hejie Yu

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1147-1169, 2022, DOI:10.32604/cmes.2022.019430 - 14 March 2022

    Abstract The entorhinal-hippocampus structure in the mammalian brain is the core area for realizing spatial cognition. However, the visual perception and loop detection methods in the current biomimetic robot navigation model still rely on traditional visual SLAM schemes and lack the process of exploring and applying biological visual methods. Based on this, we propose a map construction method that mimics the entorhinal-hippocampal cognitive mechanism of the rat brain according to the response of entorhinal cortex neurons to eye saccades in recent related studies. That is, when mammals are free to watch the scene, the entorhinal cortex… More >

  • Open Access

    ARTICLE

    Optimal Scheduling of Electrical Energy Systems Using a Fluid Dynamic Analogy

    Juanjuan Wang*, Yaya Wang, Junhui Liu, Jianbo Zheng, Hongfang Zhou

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 577-589, 2022, DOI:10.32604/fdmp.2022.017594 - 22 February 2022

    Abstract The electricity-gas transformation problem and related intrinsic mechanisms are considered. First, existing schemes for the optimization of electricity-gas integrated energy systems are analyzed through consideration of the relevant literature, and an Electricity Hub (EH) for electricity-gas coupling is proposed. Then, the distribution mechanism in the circuit of the considered electricity-gas integrated system is analyzed. Afterward, a mathematical model for the natural gas pipeline is elaborated according to the power relationship, a node power flow calculation method, and security requirements. Next, the coupling relationship between them is implemented, and dedicated simulations are carried out. Through experimental More >

  • Open Access

    ARTICLE

    Soft Computing Based Discriminator Model for Glaucoma Diagnosis

    Anisha Rebinth1,*, S. Mohan Kumar2

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 867-880, 2022, DOI:10.32604/csse.2022.022955 - 08 February 2022

    Abstract In this study, a Discriminator Model for Glaucoma Diagnosis (DMGD) using soft computing techniques is presented. As the biomedical images such as fundus images are often acquired in high resolution, the Region of Interest (ROI) for glaucoma diagnosis must be selected at first to reduce the complexity of any system. The DMGD system uses a series of pre-processing; initial cropping by the green channel’s intensity, Spatially Weighted Fuzzy C Means (SWFCM), blood vessel detection and removal by Gaussian Derivative Filters (GDF) and inpainting algorithms. Once the ROI has been selected, the numerical features such as More >

  • Open Access

    ARTICLE

    Machine Learning Based Analysis of Real-Time Geographical of RS Spatio-Temporal Data

    Rami Sameer Ahmad Al Kloub*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5151-5165, 2022, DOI:10.32604/cmc.2022.024309 - 14 January 2022

    Abstract Flood disasters can be reliably monitored using remote sensing photos with great spatiotemporal resolution. However, satellite revisit periods and extreme weather limit the use of high spatial resolution images. As a result, this research provides a method for combining Landsat and MODIS pictures to produce high spatiotemporal imagery for flood disaster monitoring. Using the spatial and temporal adaptive reflectance fusion model (STARFM), the spatial and temporal reflectance unmixing model (STRUM), and three prominent algorithms of flexible spatiotemporal data fusion (FSDAF), Landsat fusion images are created by fusing MODIS and Landsat images. Then, to extract flood… More >

  • Open Access

    ARTICLE

    Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning

    Uğur Ayvaz1, Hüseyin Gürüler2, Faheem Khan3, Naveed Ahmed4, Taegkeun Whangbo3,*, Abdusalomov Akmalbek Bobomirzaevich3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5511-5521, 2022, DOI:10.32604/cmc.2022.023278 - 14 January 2022

    Abstract Automatic speaker recognition (ASR) systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals. One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients (MFCCs). Recent researches show that MFCCs are successful in processing the voice signal with high accuracies. MFCCs represents a sequence of voice signal-specific features. This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings. Since the human perception of sound is not linear, after the More >

  • Open Access

    ARTICLE

    Skeleton Split Strategies for Spatial Temporal Graph Convolution Networks

    Motasem S. Alsawadi*, Miguel Rio

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4643-4658, 2022, DOI:10.32604/cmc.2022.022783 - 14 January 2022

    Abstract Action recognition has been recognized as an activity in which individuals’ behaviour can be observed. Assembling profiles of regular activities such as activities of daily living can support identifying trends in the data during critical events. A skeleton representation of the human body has been proven to be effective for this task. The skeletons are presented in graphs form-like. However, the topology of a graph is not structured like Euclidean-based data. Therefore, a new set of methods to perform the convolution operation upon the skeleton graph is proposed. Our proposal is based on the Spatial… More >

  • Open Access

    ARTICLE

    A Novel Method for the Reconstruction of Road Profiles from Measured Vehicle Responses Based on the Kalman Filter Method

    Jianghui Zhu1,3, Xiaotong Chang2, Xueli Zhang2, Yutai Su2, Xu Long2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1719-1735, 2022, DOI:10.32604/cmes.2022.019140 - 30 December 2021

    Abstract The estimation of the disturbance input acting on a vehicle from its given responses is an inverse problem. To overcome some of the issues related to ill-posed inverse problems, this work proposes a method of reconstructing the road roughness based on the Kalman filter method. A half-car model that considers both the vehicle and equipment is established, and the joint input-state estimation method is used to identify the road profile. The capabilities of this methodology in the presence of noise are numerically demonstrated. Moreover, to reduce the influence of the driving speed on the estimation More >

Displaying 131-140 on page 14 of 220. Per Page