Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (220)
  • Open Access

    ARTICLE

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

    Bin Ou1,2,3,4, Haoquan Chi1,3, Xu’an Qian1,3, Shuyan Fu1,3, Zhirui Miao1,3, Dingzhu Zhao1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2026.074757 - 29 January 2026

    Abstract Deformation prediction for extra-high arch dams is highly important for ensuring their safe operation. To address the challenges of complex monitoring data, the uneven spatial distribution of deformation, and the construction and optimization of a prediction model for deformation prediction, a multipoint ultrahigh arch dam deformation prediction model, namely, the CEEMDAN-KPCA-GSWOA-KELM, which is based on a clustering partition, is proposed. First, the monitoring data are preprocessed via variational mode decomposition (VMD) and wavelet denoising (WT), which effectively filters out noise and improves the signal-to-noise ratio of the data, providing high-quality input data for subsequent prediction… More > Graphic Abstract

    Multipoint Deformation Prediction Model Based on Clustering Partition of Extra High-Arch Dams

  • Open Access

    ARTICLE

    3D Photogrammetric Modelling for Digital Twin Development: Accuracy Assessment Using UAV Multi-Altitude Imaging

    Nur Afikah Juhari, Khairul Nizam Tahar*

    Revue Internationale de Géomatique, Vol.35, pp. 1-11, 2026, DOI:10.32604/rig.2026.070991 - 19 January 2026

    Abstract The use of Unmanned Aerial Vehicles (UAVs) in photogrammetry has grown rapidly due to enhanced flight stability, high-resolution imaging, and advanced Structure from Motion (SfM) algorithms. This study investigates the potential of UAVs as a cost-effective alternative to Terrestrial Laser Scanners (TLS) for 3D building reconstruction. A 3D model of Bangunan Sarjana was generated in Agisoft Metashape Professional v.2.0.2 using 492 aerial images captured at flying altitudes of 40, 50, and 60 m. Ground control points were established using GNSS (RTK-VRS), and Total Station measurements were employed for accuracy validation. The results indicate that the 60 More >

  • Open Access

    ARTICLE

    A TimeXer-Based Numerical Forecast Correction Model Optimized by an Exogenous-Variable Attention Mechanism

    Yongmei Zhang*, Tianxin Zhang, Linghua Tian

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073159 - 12 January 2026

    Abstract Marine forecasting is critical for navigation safety and disaster prevention. However, traditional ocean numerical forecasting models are often limited by substantial errors and inadequate capture of temporal-spatial features. To address the limitations, the paper proposes a TimeXer-based numerical forecast correction model optimized by an exogenous-variable attention mechanism. The model treats target forecast values as internal variables, and incorporates historical temporal-spatial data and seven-day numerical forecast results from traditional models as external variables based on the embedding strategy of TimeXer. Using a self-attention structure, the model captures correlations between exogenous variables and target sequences, explores intrinsic More >

  • Open Access

    ARTICLE

    Classification Method of Lower Limbs Motor Imagery Based on Functional Connectivity and Graph Convolutional Network

    Yang Liu, Qi Lu, Junjie Wu, Huaichang Yin, Shiwei Cheng*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070273 - 12 January 2026

    Abstract The development of brain-computer interfaces (BCI) based on motor imagery (MI) has greatly improved patients’ quality of life with movement disorders. The classification of upper limb MI has been widely studied and applied in many fields, including rehabilitation. However, the physiological representations of left and right lower limb movements are too close and activated deep in the cerebral cortex, making it difficult to distinguish their features. Therefore, classifying lower limbs motor imagery is more challenging. In this study, we propose a feature extraction method based on functional connectivity, which utilizes phase-locked values to construct a… More >

  • Open Access

    ARTICLE

    Solving Multi-Depot Vehicle Routing Problems with Dynamic Customer Demand Using a Scheduling System TS-DPU Based on TS-ACO

    Tsu-Yang Wu1, Chengyuan Yu1, Yanan Zhao2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069139 - 12 January 2026

    Abstract With the increasing complexity of logistics operations, traditional static vehicle routing models are no longer sufficient. In practice, customer demands often arise dynamically, and multi-depot systems are commonly used to improve efficiency. This paper first introduces a vehicle routing problem with the goal of minimizing operating costs in a multi-depot environment with dynamic demand. New customers appear in the delivery process at any time and are periodically optimized according to time slices. Then, we propose a scheduling system TS-DPU based on an improved ant colony algorithm TS-ACO to solve this problem. The classical ant colony More >

  • Open Access

    ARTICLE

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

    Kai Gui1,#, Tianyi Yang1,#, Chengying Xiong1, Yue Wang1, Zhiqiang He1, Wuxian Li2,3,*, Min Tang1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070143 - 30 December 2025

    Abstract Objectives: The mechanism by which specific tumor subsets in colorectal cancer (CRC) use alternative metabolic pathways, particularly those modulated by hypoxia and fructose, to alter the tumor microenvironment (TME) remains unclear. This study aimed to identify these malignant subpopulations and characterize their intercellular signaling networks and spatial organization through an integrative multi-omics approach. Methods: Leveraging bulk datasets, single-cell RNA sequencing, and integrative spatial transcriptomics, we developed a prognostic model based on hypoxia-and fructose metabolism-related genes (HFGs) to delineate tumor cell subpopulations and their intercellular signaling networks. Results: We identified a specific subset of stanniocalcin-2 positive (STC2+)… More > Graphic Abstract

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025

    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    Validation of Contextual Model Principles through Rotated Images Interpretation

    Illia Khurtin*, Mukesh Prasad

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.067481 - 09 December 2025

    Abstract The field of artificial intelligence has advanced significantly in recent years, but achieving a human-like or Artificial General Intelligence (AGI) remains a theoretical challenge. One hypothesis suggests that a key issue is the formalisation of extracting meaning from information. Meaning emerges through a three-stage interpretative process, where the spectrum of possible interpretations is collapsed into a singular outcome by a particular context. However, this approach currently lacks practical grounding. In this research, we developed a model based on contexts, which applies interpretation principles to the visual information to address this gap. The field of computer… More >

  • Open Access

    ARTICLE

    Spatial Analysis Tool for Urban Environmental Quality Assessment: Leveraging Geoinformatics and GIS

    Igor Musikhin*

    Revue Internationale de Géomatique, Vol.34, pp. 939-957, 2025, DOI:10.32604/rig.2025.071168 - 09 December 2025

    Abstract Urban environmental quality research is crucial, as cities become competitive centers concentrating human talent, industrial activity, and financial resources, contributing significantly to national economies. Municipal and government priorities include retaining residents, preventing skilled worker outflow, and meeting the evolving needs of urban populations. The study presents the development and application of a scenario-based spatial analysis tool for assessing urban environmental quality at a detailed spatial scale within the city of Novosibirsk. Using advanced geoinformatics, GIS techniques, and an expert knowledge base, the tool integrates diverse thematic data layers with user-defined scenarios to compute and visualize… More >

  • Open Access

    ARTICLE

    Efficient Image Deraining through a Stage-Wise Dual-Residual Network with Cross-Dimensional Spatial Attention

    Tiantian Wang1,2, Zhihua Hu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2357-2381, 2025, DOI:10.32604/cmes.2025.073640 - 26 November 2025

    Abstract Rain streaks introduced by atmospheric precipitation significantly degrade image quality and impair the reliability of high-level vision tasks. We present a novel image deraining framework built on a three-stage dual-residual architecture that progressively restores rain-degraded content while preserving fine structural details. Each stage begins with a multi-scale feature extractor and a channel attention module that adaptively emphasizes informative representations for rain removal. The core restoration is achieved via enhanced dual-residual blocks, which stabilize training and mitigate feature degradation across layers. To further refine representations, we integrate cross-dimensional spatial attention supervised by ground-truth guidance, ensuring that More >

Displaying 1-10 on page 1 of 220. Per Page