Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (130)
  • Open Access


    Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization

    Mehrdad Shoeibi1, Mohammad Mehdi Sharifi Nevisi2, Reza Salehi3, Diego Martín3,*, Zahra Halimi4, Sahba Baniasadi5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3469-3493, 2024, DOI:10.32604/cmc.2024.049847

    Abstract Hyperspectral (HS) image classification plays a crucial role in numerous areas including remote sensing (RS), agriculture, and the monitoring of the environment. Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification. This process involves selecting the most informative spectral bands, which leads to a reduction in data volume. Focusing on these key bands also enhances the accuracy of classification algorithms, as redundant or irrelevant bands, which can introduce noise and lower model performance, are excluded. In this paper, we propose an approach for HS image classification using… More >

  • Open Access


    Research Progress on Economic Forest Water Stress Based on Bibliometrics and Knowledge Graph

    Xin Yin1,#, Shuai Wang1,#, Chunguang Wang1, Haichao Wang2, Zheying Zong1,3,*, Zeyu Ban1

    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 843-858, 2024, DOI:10.32604/phyton.2024.049114

    Abstract This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared, spectral remote sensing technology, and the estimation of economic forest water stress. It aimed to review the development and current status of this field, as well as to identify future research trends. A search was conducted on the China National Knowledge Infrastructure (CNKI) database using the keyword “water stress” for relevant studies from 2003 to 2023. The visual analysis function of CNKI was used to generate the distribution of annual publication volume, and CiteSpace 6.1.R6 was utilized to create network More >

  • Open Access


    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2151-2168, 2024, DOI:10.32604/cmc.2024.049360

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral… More >

  • Open Access


    Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems

    Jingcheng Zhang1, Xingjian Zhou1, Dong Shen1, Qimeng Yu1, Lin Yuan2,*, Yingying Dong3

    Phyton-International Journal of Experimental Botany, Vol.93, No.4, pp. 745-762, 2024, DOI:10.32604/phyton.2024.049734

    Abstract As an important rice disease, rice bacterial leaf blight (RBLB, caused by the bacterium Xanthomonas oryzae pv. oryzae), has become widespread in east China in recent years. Significant losses in rice yield occurred as a result of the disease’s epidemic, making it imperative to monitor RBLB at a large scale. With the development of remote sensing technology, the broad-band sensors equipped with red-edge channels over multiple spatial resolutions offer numerous available data for large-scale monitoring of rice diseases. However, RBLB is characterized by rapid dispersal under suitable conditions, making it difficult to track the disease at… More >

  • Open Access


    A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification

    Tsu-Yang Wu1,2, Haonan Li2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 19-46, 2024, DOI:10.32604/cmc.2024.048347

    Abstract Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian… More >

  • Open Access


    Curing Study of Epoxy Resin of (2E, 6E)-Bis (4-hydroxybenzylidene)-4-methylcyclohexanone with Different Aromatic Diamines and Anhydrides Hardeners: Spectral and Thermal Analysis


    Journal of Polymer Materials, Vol.38, No.1-2, pp. 35-48, 2021, DOI:10.32381/JPM.2021.38.1-2.4

    Abstract Conventional curing study of epoxy resin of (2E, 6E)-bis (4-hydroxybenzylidene)-4-methyl cyclohexanone (EMBHBC) was conducted at 140 0 /150 0 C by using 4,4’-diaminodiphenylmethane (DDM),4,4’-diaminodiphenylsulphone (DDS),4-4’-diaminodiphenyl ether (DDE), p-phenylenediamine (PDA), 1,2,3,6-tetrahydrophthalic anhydride(THPA), maleic anhydride (MAH) and pyromellitic dianhydride (PMDA). The gel time for DDS, THPA and DDM hardeners are found considerably longer than those of DDE, PDA, MAH and PMDA systems indicated different reactivity towards curing of EMBHBC. Sol–gel analysis of cured resins was carried out in DMF at room temperature. Diamines cured samples showed 76.3-97.5% gel fractions, while anhydrides cured samples showed 84.6-99.6% gel fractions.… More >

  • Open Access


    Lightweight Cross-Modal Multispectral Pedestrian Detection Based on Spatial Reweighted Attention Mechanism

    Lujuan Deng, Ruochong Fu*, Zuhe Li, Boyi Liu, Mengze Xue, Yuhao Cui

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4071-4089, 2024, DOI:10.32604/cmc.2024.048200

    Abstract Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different More >

  • Open Access


    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and… More >

  • Open Access


    Improving the Accuracy of Vegetation Index Retrieval for Biomass by Combining Ground-UAV Hyperspectral Data–A New Method for Inner Mongolia Typical Grasslands

    Ruochen Wang1,#, Jianjun Dong2,#, Lishan Jin3, Yuyan Sun3, Taogetao Baoyin2, Xiumei Wang*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 387-411, 2024, DOI:10.32604/phyton.2024.047573

    Abstract Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing technology and screened sensitive bands through ground hyperspectral data transformation and correlation analysis. The narrow band vegetation indices were… More >

  • Open Access


    Sanxingdui Cultural Relics Recognition Algorithm Based on Hyperspectral Multi-Network Fusion

    Shi Qiu1, Pengchang Zhang1,*, Xingjia Tang2, Zimu Zeng1, Miao Zhang1, Bingliang Hu1,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3783-3800, 2023, DOI:10.32604/cmc.2023.042074

    Abstract Sanxingdui cultural relics are the precious cultural heritage of humanity with high values of history, science, culture, art and research. However, mainstream analytical methods are contacting and detrimental, which is unfavorable to the protection of cultural relics. This paper improves the accuracy of the extraction, location, and analysis of artifacts using hyperspectral methods. To improve the accuracy of cultural relic mining, positioning, and analysis, the segmentation algorithm of Sanxingdui cultural relics based on the spatial spectrum integrated network is proposed with the support of hyperspectral techniques. Firstly, region stitching algorithm based on the relative position… More >

Displaying 1-10 on page 1 of 130. Per Page