Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (139)
  • Open Access

    ARTICLE

    Rotational Friction Damper’s Performance for Controlling Seismic Response of High Speed Railway Bridge-Track System

    Wei Guo1,2, Chen Zeng1,2, Hongye Gou3,*, Yao Hu1,2, Hengchao Xu4, Longlong Guo1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 491-515, 2019, DOI:10.32604/cmes.2019.06162

    Abstract CRTS-II slab ballastless track on bridge is a unique system in China high speed railway. The application of longitudinal continuous track system has obviously changed dynamic characteristics of bridge structure. The bridge system and CRTS-II track system form a complex nonlinear system. To investigate the seismic response of high speed railway (HSR) simply supported bridge-track system, nonlinear models of three-span simply supported bridge with piers of different height and CRTS-II slab ballastless track system are established. By seismic analysis, it is found that shear alveolar in CRTS-II track system is more prone to be damaged than bridge components, such as… More >

  • Open Access

    ARTICLE

    Numerical Simulation of High Speed Rotating Waterjet Flow Field in a Semi Enclosed Vacuum Chamber

    Haojun Peng1,*, Ping Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.1, pp. 59-73, 2018, DOI:10.3970/cmes.2018.114.059

    Abstract In this paper, a three dimension model is built according to real surface cleaner in airport runway rubber mark cleaning vehicle and numerical simulation of this model is carried out using Ansys Fluent software. After comparison and analysis the flow field between high speed rotating waterjet and static waterjet formerly studied by other researchers, the influences of different standoff distance from nozzle outlet to runway surface and rotation speed on rubber mark cleaning effect is simulated and analyzed. Results show the optimal operation parameters for the simulated model and quantitative advices are given for design, manufacture and operation of the… More >

  • Open Access

    ARTICLE

    Speedup of Elastic–Plastic Analysis of Large-scale Model with Crack Using Partitioned Coupling Method with Subcycling Technique

    Yasunori Yusa1, Shinobu Yoshimura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 87-104, 2014, DOI:10.3970/cmes.2014.099.087

    Abstract To speed up the elastic–plastic analysis of a large-scale model with a crack in which plasticity is observed near the crack, the partitioned coupling method is applied. In this method, the entire analysis model is decomposed into two non-overlapped domains (i.e., global and local domains), and the two domains are analyzed with an iterative method. The cracked local domain is modeled as an elastic–plastic body, whereas the large-scale global domain is modeled as an elastic body. A subcycling technique is utilized for incremental analysis to reduce the number of global elastic analyses. For a benchmark problem with 6 million degrees… More >

  • Open Access

    ARTICLE

    Frequency Domain Based Solution for Certain Class of Wave Equations: An exhaustive study of Numerical Solutions

    Vinita Chellappan1, S. Gopalakrishnan1 and V. Mani1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.2, pp. 131-174, 2014, DOI:10.3970/cmes.2014.097.131

    Abstract The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical… More >

  • Open Access

    ARTICLE

    Vibration Control and Separation of a Device Scanning an Elastic Plate

    Shueei-Muh Lin1, Min-Jun Teng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.3, pp. 189-213, 2014, DOI:10.3970/cmes.2014.103.189

    Abstract The control and separation of a scanning device moving along an arbitrary trajectory on an elastic plate is investigated. The system is a moving mass problem and is difficult to analyze directly. A semi-analytical method for the movingmass model is presented here. Without vibration control, the separation of a vehicle from a plate is likely to happen. The mechanism of separation of a vehicle from a plate is studied. Moreover, the effects of several parameters on vibration separation and the critical speed of system are studied. An effective control methodology is proposed for suppressing vibration and separation This model is… More >

  • Open Access

    ARTICLE

    Parallel Control-volume Method Based on Compact Local Integrated RBFs for the Solution of Fluid Flow Problems

    N. Pham-Sy1, C.-D. Tran1, N. Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 363-397, 2014, DOI:10.3970/cmes.2014.100.363

    Abstract In this paper, a high performance computing method based on the Integrated Radial Basis Function (IRBF), Control Volume (CV) and Domain Decomposition technique for solving Partial Differential Equations is presented. The goal is to develop an efficient parallel algorithm based on the Compact Local IRBF method using the CV approach, especially for problems with non-rectangular domain. The results showed that the goal is achieved as the computational efficiency is quite significant. For the case of square lid driven cavity problem with Renoylds number 100, super-linear speed-up is also achieved. The parallel algorithm is implemented in the Matlab environment using Parallel… More >

  • Open Access

    ARTICLE

    Model Predictive Control for High-speed Train with Automatic Trajectory Configuration and Tractive Force Optimization

    Yonghua Zhou1 , Xun Yang1 , Chao Mi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.6, pp. 415-437, 2013, DOI:10.3970/cmes.2013.090.415

    Abstract High-speed train transportation is organized in a way of globally centralized planning and locally autonomous adjustment with the real-time known positions, speeds and other state information of trains. The hierarchical integration architecture composed of top, middle and bottom levels is proposed based on model predictive control (MPC) for the real-time scheduling and control. The middle-level trajectory configuration and tractive force setpoints play a critical role in fulfilling the top-level scheduling commands and guaranteeing the controllability of bottomlevel train operations. In the middle-level MPC-based train operation planning, the continuous cellular automaton model of train movements is proposed to dynamically configure the… More >

  • Open Access

    ARTICLE

    A Parameter Free Cost Function for Multi-Point Low Speed Airfoil Design

    G. Veble1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.3, pp. 243-260, 2008, DOI:10.3970/cmes.2008.036.243

    Abstract A simple cost function is proposed that depends on the inviscid pressure distribution around an airfoil and that, when minimized, results in airfoils that promote laminar flow. Additional constraints specify the design point of the airfoil. The method allows for straightforward inclusion of multiple design points. The resulting airfoils are quantitatively similar to those already successfully used in practice. More >

  • Open Access

    ARTICLE

    Wave Propogation Characteristics of Rotating Uniform Euler-Bernoulli Beams

    K.G. Vinod1, S. Gopalakrishnan1, R. Ganguli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.3, pp. 197-208, 2006, DOI:10.3970/cmes.2006.016.197

    Abstract A spectral finite element formulation for a rotating beam subjected to small duration impact is presented in this paper. The spatial variation in centrifugal force is modeled in an average sense. Spectrum and dispersion plots are obtained as a function of rotating speed. It is shown that the flexural wave tends to behave non-dispersively at very high rotation speeds. The numerical results are simulated for two rotating waveguides of different dimensions. The results show that there is a steep increase in responses with the response peaks and the reflected signals almost vanishing at higher rotating speeds. The solution obtained in… More >

  • Open Access

    ARTICLE

    The Applications of Meshless Local Petrov-Galerkin (MLPG) Approaches in High-Speed Impact, Penetration and Perforation Problems

    Z. D. Han1, H. T. Liu1, A. M. Rajendran2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.2, pp. 119-128, 2006, DOI:10.3970/cmes.2006.014.119

    Abstract This paper presents the implementation of a three-dimensional dynamic code, for contact, impact, and penetration mechanics, based on the Meshless Local Petrov-Galerkin (MLPG) approach. In the current implementation, both velocities and velocity-gradients are interpolated independently, and their compatibility is enforced only at nodal points. As a result, the time consuming differentiations of the shape functions at all integration points is avoided, and therefore, the numerical process becomes more stable and efficient. The ability of the MLPG code for solving high-speed contact, impact and penetration problems with large deformations and rotations is demonstrated through several computational simulations, including the Taylor impact… More >

Displaying 121-130 on page 13 of 139. Per Page