Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    MODELLING AND SIMULATION OF AU-WATER NANOFLUID FLOW IN WAVY CHANNELS

    Suripeddi Srinivasa , Akshay Guptab,*, Ashish Kumar Kandoib

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-12, 2014, DOI:10.5098/hmt.5.21

    Abstract The present work deals with the flow and thermal analysis of nanofluid in the wavy channels. The governing flow equations are solved numerically using CFD package assuming single phase approach. To study the effect of the concentration and size variation of the nanoparticle, the concentration and size are varied from 0% - 5% and 25 nm - 100 nm respectively over the Reynolds number range of 250-1500 for Au-water nanofluid. The effect on heat transfer enhancement because of corrugation of wavy channel is analyzed on four different shapes (sinusoidal, triangular, trapezoidal and square) channels. The effect of amplitude of the… More >

  • Open Access

    ARTICLE

    Numerical Investigations of Laminar Air Flow and Heat Transfer Characteristics in a Square Channel Inserted with Discrete X-V Baffles (XVB)

    Amnart Boonloi1, Withada Jedsadaratanachai2,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 317-336, 2023, DOI:10.32604/fhmt.2023.044929

    Abstract Thermal performance enhancement in a square channel heat exchanger (HX) using a passive technique is presented. Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvement. The vortex turbulator of interest is discrete X-V baffles (XVB). The discrete XVBs are inserted in the square channel with the main aim of generating vortex flow. The vortex flow generated can support the enhanced convective heat transfer coefficient and also enhance HX performance. Effects of baffle configuration (type A and B), baffle size (w/H = 0.05, 0.10, 0.15 and 0.20), baffle distance (e/H = 1, 1.5… More > Graphic Abstract

    Numerical Investigations of Laminar Air Flow and Heat Transfer Characteristics in a Square Channel Inserted with Discrete X-V Baffles (XVB)

  • Open Access

    ARTICLE

    DEVELOPMENT OF NEW CORRELATIONS FOR NUSSELT NUMBER AND FRICTION FACTOR OF /WATER BASED NANOFLUID FLOW IN V-PATTERN PROTRUSION RIBBED SQUARE CHANNEL

    Yashwant Singha , Rajesh Maithanib , Sunil Kumara , Ehsan Gholamalizadehc , Anil Kumara,d,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-16, 2018, DOI:10.5098/hmt.11.33

    Abstract Nanofluids play important roles in the heat transfer and flow characteristics in ribbed square channels. Systematic experiments are conducted to measure heat transfer enhancement and TiO2-H2O based nanofluid flow characteristics on a protruded with combined V-type ribbed square channel. Reynolds number studied in the channel range from 4000-18000. Investigational parameters of square channel contain, volume fraction range of 1.0- 4.0%, particle diameter range of 30nm-45nm, relative protruded rib height range of 0.10-0.25, ratio of protruded height to print diameter range of 0.8- 2.0, relative protruded rib pitch ratio range of 2.0-3.5 and angle of attack of 300 -750 respectively. Results… More >

  • Open Access

    ARTICLE

    EFFECT OF LOCATION IN TRANSVERSE PLANE FOR 45-DEGREE V-BAFFLE ON FLOW AND HEAT TRANSFER MECHANISMS IN A SQUARE CHANNEL

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-16, 2018, DOI:10.5098/hmt.11.29

    Abstract Numerical predictions on flow and heat transfer in a square channel heat exchanger placed with V-baffle are examined. The gap spacing between the V-baffle and channel wall is varied for all baffle heights. The laminar regime with Re = 100 – 1000 is considered. The numerical model for the square channel heat exchanger placed with V-baffle is validated. The preliminary result reveals that the computational domain has reliability to predict flow and heat transfer in the channel. The mechanisms on flow and heat transfer in the heat exchanger channel are illustrated at the numerical result section. The thermal performance analysis… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF GAP SPACING RATIO ON FLOW STRUCTURE AND HEAT TRANSFER CHARACTERISTIC FOR THE V-ORIFICE IN THE SQUARE CHANNEL HEAT EXCHANGER

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-13, 2019, DOI:10.5098/hmt.12.19

    Abstract The variations of flow and heat transfer in the square channel heat exchanger inserted with various parameters of V-orifice are investigated numerically. The influences of flow directions (V-Downstream and V-Upstream), gap spacing ratios (g/H or GR = 0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) and blockage ratios (b/H or BR = 0.05, 0.10, 0.15, 0.25 and 0.30) on flow topology and heat transfer behavior are reported. The laminar flow regime with the Reynolds number in the range 100 – 2000 is considered. The numerical results are presented in terms of flow and heat transfer structure in the heat exchanger… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE IMPROVEMENT IN A SQUARE CHANNEL HEAT EXCHANGER WITH VARIOUS PARAMETERS OF V-WAVY PLATES

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.1

    Abstract Numerical examinations on flow and heat transfer behaviors in a square channel heat exchanger equipped with various configurations of V-wavy plate are performed. The pitch-to-channel height ratios, wavy height-to-channel height ratios and flow directions of the test section are investigated for the Reynolds number in the range of 100 – 1000 (laminar flow regime). The finite volume method is selected for the present investigation. The results are reported in terms of flow and heat transfer mechanisms in the channel. The thermal performance assessments of the square channel fitted with the V-wavy plate are also concluded. As the numerical results, the… More >

  • Open Access

    ARTICLE

    INFLUENCE OF RING SIZE AND LOCATION ON FLOW TOPOLOGY, HEAT TRANSFER STRUCTURE AND THERMAL EFFICIENCY IN HEAT EXCHANGER SQUARE CHANNEL PLACED WITH 30-DEGREE INCLINED SQUARE RING

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-11, 2019, DOI:10.5098/hmt.13.28

    Abstract This paper presents the numerical investigations (finite volume method with SIMPLE algorithm) on flow structure, heat transfer behavior and performance assessment in heat exchanger square channel placed with 30o inclined square ring (ISR). The influences of ring size and placement on flow and heat transfer characteristics are considered for laminar flow region with the Reynolds number in the range around 100 – 2000. The purpose for the insertion of the ISR in the square channel is to induce the vortex flow and also increase the turbulent mixing. The numerical result reveals that the ring size and location have effects for… More >

Displaying 1-10 on page 1 of 7. Per Page