Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Stress Relaxation and Sensitivity Weight for Bi-Directional Evolutionary Structural Optimization to Improve the Computational Efficiency and Stabilization on Stress-Based Topology Optimization

    Chao Ma, Yunkai Gao*, Yuexing Duan, Zhe Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.2, pp. 715-738, 2021, DOI:10.32604/cmes.2021.011187

    Abstract Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs. To solve the inherent issues of stress-based topology optimization, many schemes are added to the conventional bi-directional evolutionary structural optimization (BESO) method in the previous studies. However, these schemes degrade the generality of BESO and increase the computational cost. This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method. A global stress measure constructed by p-norm function is treated as the objective function. To… More >

  • Open Access

    ARTICLE

    Video Source Identification Algorithm Based on 3D Geometric Transformation

    Jian Li1, Yang Lv1, Bin Ma1,*, Meihong Yang2, Chunpeng Wang1, Yang Zheng3

    Computer Systems Science and Engineering, Vol.35, No.6, pp. 513-521, 2020, DOI:10.32604/csse.2020.35.513

    Abstract Digital video has become one of the most preferred ways for people to share information. Considering people tend to release illegal information in anonymous way, the problem of video source identification attracts more and more attention as an important part of multimedia forensics. The Photo-Response Non-Uniformity (PRNU) based algorithm shows to be a promising solution for the problem of video source identification. However, it is necessary to make a geometric transformation for testing PRNU noise to align it with the reference noise, due to the effect of video stabilization. This paper analyzes the three-dimensional (3D) characteristics of camera jitters and… More >

  • Open Access

    ARTICLE

    Stabilization for Equal-Order Polygonal Finite Element Method for High Fluid Velocity and Pressure Gradient

    T. Vu-Huu1, 2, C. Le-Thanh3, H. Nguyen-Xuan4, M. Abdel-Wahab5, 6, *

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1109-1123, 2020, DOI:10.32604/cmc.2020.07989

    Abstract This paper presents an adapted stabilisation method for the equal-order mixed scheme of finite elements on convex polygonal meshes to analyse the high velocity and pressure gradient of incompressible fluid flows that are governed by Stokes equations system. This technique is constructed by a local pressure projection which is extremely simple, yet effective, to eliminate the poor or even non-convergence as well as the instability of equal-order mixed polygonal technique. In this research, some numerical examples of incompressible Stokes fluid flow that is coded and programmed by MATLAB will be presented to examine the effectiveness of the proposed stabilised method. More >

  • Open Access

    ARTICLE

    A Robust Roll Stabilization Controller with Aerodynamic Disturbance and Actuator Failure Consideration

    Qiancai Ma1, Fengjie Gao2, Yang Wang3, Qiuxiong Gou3, Liangyu Zhao1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.1, pp. 109-130, 2020, DOI:10.32604/cmes.2020.08109

    Abstract Combining adaptive theory with an advanced second-order sliding mode control algorithm, a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is proposed in this paper. The presented controller is summarized as an “observer-controller” system. More specifically, an adaptive second-order sliding mode observer is presented to select the proper design parameters and estimate the knowledge of aerodynamic disturbance and actuator failure, while the proposed roll stabilization control scheme can drive both roll angle and rotation rate smoothly converge to the desired value. Theoretical analysis and numerical simulation results demonstrate the effectiveness of the proposed controller. More >

  • Open Access

    ABSTRACT

    Neovascularization and Intraplaque Hemorrhage in Atherosclerotic Plaque Destabilization-A Mathematical Model

    Muyi Guo1, Yan Cai1, Zhiyong Li1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 49-49, 2019, DOI:10.32604/mcb.2019.05727

    Abstract Observational studies have identified angiogenesis from the adventitial vasa vasorum and intraplaque hemorrhage (IPH) as critical factors in atherosclerotic plaque progression and destabilization. Here we propose a mathematical model incorporating intraplaque neovascularization and hemodynamic calculation for the quantitative evaluation of atherosclerotic plaque hemorrhage. An angiogenic microvasculature based on histology of a patient’s carotid plaque is generated by two-dimensional nine-point model of endothelial cell migration. Three key cells (endothelial cells, smooth muscle cells and macrophages) and three key chemicals (vascular endothelial growth factors, extracellular matrix and matrix metalloproteinase) are involved in the intraplaque angiogenesis model, and described by the reaction-diffusion partial… More >

  • Open Access

    ABSTRACT

    The Role of Shear Stress in Atherosclerotic Plaque Progression, Destabilization and Rupture

    J. J. Wentzel1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 7-8, 2019, DOI:10.32604/mcb.2019.05696

    Abstract The pathophysiology of atherosclerosis is complex and multifactorial, involving systemic risk factors and biomechanical stimuli. Atherosclerotic plaques predominantly form in regions that are exposed to low shear stress of the blood at the vessel wall, whereas regions of moderate and high shear stress are generally protected. For more than 20 years, my research group performs studies to investigate the role of shear stress in atherosclerotic plaque formation and rupture in coronary and carotid arteries of patients and laboratory animals. For that reason, new technology was developed to 3D reconstruct arteries based on fusion of multiple invasive and non-invasive imaging modalities.… More >

  • Open Access

    ARTICLE

    Stabilization and Evaluation of Modified Nanofiber Flour Wood on the Properties of Cement-Baszd Mortar

    Fadhel Aloulou1,*, Sabrine Alila2, Habib Sammouda1

    Journal of Renewable Materials, Vol.7, No.8, pp. 763-774, 2019, DOI:10.32604/jrm.2019.04071

    Abstract The influence of nanofiberwood on the properties of the fresh condition of cement based mortars is not known in detail, despite recent advances in nanocellulose technology and it is related composite materials. Nanofiber wood from industrial waste, produced by high-pressure homogenization, was used as cement partial replacement for cement paste at a content ranging from 0% to 2% by weight of cement. The effect of the nanofiber wood content on the porosity, the compressive strength and the degree of hydration of the cement was investigated. Results have shown an improvement in the compressive strength by more than 50% with 1%… More >

  • Open Access

    ARTICLE

    A Stabilized Finite Element Formulation for Continuum Models of Traffic Flow

    Durgesh Vikram1, Sanjay Mittal2, Partha Chakroborty1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 237-260, 2011, DOI:10.3970/cmes.2011.079.237

    Abstract A stabilized finite element formulation is presented to solve the governing equations for traffic flow. The flow is assumed to be one-dimensional. Both, PW-type (Payne-Whitham) 2-equation models and the LWR-type (Lighthill-Whitham-Richards) 1-equation models are considered. The SUPG (Streamline-Upwind/Petrov-Galerkin) and shock capturing stabilizations are utilized. These stabilizations are sufficient for the 1-equation models. However, an additional stabilization is necessary for the 2-equation models. For the first time, such a stabilization is proposed. It arises from the coupling between the two equations and is termed as IEPG (Inter-Equation/Petrov-Galerkin) stabilization. Two behavioral models are studied: Greenshields' (GS) and Greenberg's (GB) models. Numerical tests… More >

  • Open Access

    ARTICLE

    Review: Possible strategies for the control and stabilization of Marangoni flow in laterally heated floating zones

    Marcello Lappa1

    FDMP-Fluid Dynamics & Materials Processing, Vol.1, No.2, pp. 171-188, 2005, DOI:10.3970/fdmp.2005.001.171

    Abstract The paper presents a comparative and critical analysis of some theoretical/experimental/numerical arguments concerning the possible stabilization of the surface-tension-driven (Marangoni) flow in the Floating Zone technique and in various related fluid-dynamic models. It is conceived as a natural extension of the focused overview published in Cryst. Res. Tech. 40(6), 531, (2005) where much room was devoted to discuss the intrinsic physical mechanisms responsible for three-dimensional and oscillatory flows in a variety of technological processes. Here, a significant effort is provided to illustrate the genesis of possible control strategies (many of which are still in a very embryonic condition), the underlying… More >

Displaying 11-20 on page 2 of 19. Per Page