Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Hybrid Malware Variant Detection Model with Extreme Gradient Boosting and Artificial Neural Network Classifiers

    Asma A. Alhashmi1, Abdulbasit A. Darem1,*, Sultan M. Alanazi1, Abdullah M. Alashjaee2, Bader Aldughayfiq3, Fuad A. Ghaleb4,5, Shouki A. Ebad1, Majed A. Alanazi1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3483-3498, 2023, DOI:10.32604/cmc.2023.041038

    Abstract In an era marked by escalating cybersecurity threats, our study addresses the challenge of malware variant detection, a significant concern for a multitude of sectors including petroleum and mining organizations. This paper presents an innovative Application Programmable Interface (API)-based hybrid model designed to enhance the detection performance of malware variants. This model integrates eXtreme Gradient Boosting (XGBoost) and an Artificial Neural Network (ANN) classifier, offering a potent response to the sophisticated evasion and obfuscation techniques frequently deployed by malware authors. The model’s design capitalizes on the benefits of both static and dynamic analysis to extract API-based features, providing a holistic… More >

  • Open Access

    ARTICLE

    Static and Dynamic Analysis of Shell Panels Using the Analog Equation Method

    A.J. Yiotis1, J.T. Katsikadelis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 95-104, 2000, DOI:10.3970/cmes.2000.001.255

    Abstract The Analog Equation Method is applied to the static and dynamic analysis of thin cylindrical shell panels. The Fl\"{u}gge theory is adopted. The three displacement components are established by solving two membrane and one plate bending problems under the same boundary conditions subjected to "appropriate'' (equivalent) fictitious loads. Numerical results are presented which illustrate the efficiency and the accuracy of the proposed method. More >

  • Open Access

    ARTICLE

    Static and Dynamic Analysis of Laminated Thick and Thin Plates and Shells by a Very Simple Displacement-based 3-D Hexahedral Element with Over-Integration

    Qifeng Fan1, Yaping Zhang2, Leiting Dong1,3, Shu Li1, Satya N. Atluri4

    CMC-Computers, Materials & Continua, Vol.47, No.2, pp. 65-88, 2015, DOI:10.3970/cmc.2015.047.065

    Abstract A very simple displacement-based hexahedral 32-node element (denoted as DPH32), with over-integration in the thickness direction, is developed in this paper for static and dynamic analyses of laminated composite plates and shells. In contrast to higher-order or layer-wise higher-order plate and shell theories which are widely popularized in the current literature, the proposed method does not develop specific theories of plates and shells with postulated kinematic assumptions, but simply uses the theory of 3-D solid mechanics and the widely-available solid elements. Over-integration is used to evaluate the element stiffness matrices of laminated structures with an arbitrary number of laminae, while… More >

Displaying 1-10 on page 1 of 3. Per Page