Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (148)
  • Open Access

    ARTICLE

    UNSTEADY MHD THREE-DIMENSIONAL CASSON NANOFLUID FLOW OVER A POROUS LINEAR STRETCHING SHEET WITH SLIP CONDITION

    I.S. Oyelakina,† , S. Mondala,* , P. Sibandaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.37

    Abstract In this paper we study the effects of thermal radiation, heat and mass transfer on the unsteady magnetohydrodynamic(MHD) flow of a three dimensional Casson nanofluid. The flow is subject to partial slip and convective conditions. The traditional model which includes the effects of Brownian motion and thermophoresis is revised so that the nanofluid particle volume fraction on the boundary is not actively controlled. In this respect the problem is more realistic. The dimensionless governing equations were solved using the spectral quasi-linearisation method. This work aims to fill the gap in existing literature by showing the effects of porosity, magnetic field… More >

  • Open Access

    ARTICLE

    EFFECTS OF BUOYANCY PARAMETER ON UNSTEADY 3D DOUBLE DIFFUSIVE CONVECTION IN MOLTEN PB-SN ALLOYS

    Maatki Chemseddinea , Hakan F. Oztopb,c,*, Lioua Kolsia,d, Abdullah A.A.A. Al-Rashede , Mohamed Naceur Borjinia , Nidal Abu-Hamdehc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.33

    Abstract A computational study has been made for a three dimensional double diffusive convection with molten Pb-Sn by using finite volume method. In this work, two vertical walls have different temperature and different concentration while remaining walls are adiabatic. Buoyancy ratio, which changes between N = -0.1 and -10, is the main governing parameter during work. Other parameters are taken as fixed with Pr = 0.02, Le = 7500 and Ra = 5×103 . It is found that changing of buoyancy parameter becomes more effective on heat transfer than that of mass transfer. More >

  • Open Access

    ARTICLE

    MATHEMATICAL STUDY OF NON-NEWTONIAN NANOFLUID TRANSPORT PHENOMENA FROM AN ISOTHERMAL SPHERE

    CH. Amanullaa,b , N. Nagendraa,1 , M. Surya Narayana Reddyb , A. Subba Raoa , O. Anwar Bégc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.29

    Abstract In this article, the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid from an isothermal sphere surface is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type.… More >

  • Open Access

    ARTICLE

    AN EXACT SOLUTION ON UNSTEADY MHD VISCOELASTIC FLUID FLOW PAST AN INFINITE VERTICAL PLATE IN THE PRESENCE OF THERMAL RADIATION

    E. Kumaresan, A .G. Vijaya Kumar*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-7, 2017, DOI:10.5098/hmt.8.9

    Abstract A study has been carried out to analyse an unsteady free convective chemically reacting, MHD Visco-elastic fluid (Walter’s liquid-B model) flow past an infinite vertical plate in the presence of thermal radiation with uniform temperature and species diffusion. The dimensionless governing partial differential equations are solved by using Laplace transform technique. The effects of different physical parameters like visco-elastic parameter, chemical reaction parameter, Magnetic field parameter, thermal Grashof number, mass Grashof number and time are discussed by plotting the velocity profiles for both cooling  (Gr >0, Gm > 0) and heating of the plate (Gr < 0, Gm <… More >

  • Open Access

    ARTICLE

    ENTROPY GENERATION OF UNSTEADY RADIATIVE CASSON FLUID FLOW THROUGH POROUS MEDIUM OVER A PERMEABLE STRETCHING SURFACE WITH INCLINED MAGNETIC FIELD

    Shalini Jain*, Amit Parmar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-8, 2017, DOI:10.5098/hmt.9.40

    Abstract Present paper aims to investigate entropy generation of unsteady radiative Casson fluid flow through porous medium over a permeable stretching surface with inclined magnetic field. Time-dependent partial differential equations are transformed into non-linear ordinary differential equations using similarity transformations. These transformed equations are solved numerically by Runge–Kutta fourth-order with shooting technique. The effects of pertinent parameter such as magnetic field parameter, Casson fluid parameter, inclined angle of magnetic field parameter, Radiation parameter and Reynolds number on the velocity, temperature and entropy profiles are presented graphically. Local Nusselt and local Sherwood number are also obtained and presented in tabulated form. More >

  • Open Access

    ARTICLE

    MATHEMATICAL MODELLING OF UNSTEADY MHD DOUBLEDIFFUSIVE NATURAL CONVECTION FLOW IN A SQUARE CAVITY

    K. Venkatadria,*, S. Gouse Mohiddina , M. Suryanarayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.33

    Abstract Two-dimensional unsteady laminar double-diffusive free convective flow of a conducting fluid in a thermally insulated square enclosure except the left wall has been numerically studied in presence of heat generation/absorption. The Marker and Cell (MAC) method is employed for solving nonlinear momentum, energy and concentration equations and the numerical MATLAB code is validated with the previous study. The computed results are depicted graphically and discussed for various values of Rayleigh number (Ra), Hartmann number (Ha), Buoyancy ratio parameter (N), Lewis number (Le) and heat absorption/generation parameter (γ). It is observed that the rate of heat and mass transfer decreases with… More >

  • Open Access

    ARTICLE

    MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID

    A. El Mansouria,b, M. Hasnaouia,*, A. Amahmida , Y. Dahania , M. Alouaha , S. Hasnaouia , R. Khaoulaa , M. Ouahasa, R. Bennacerb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.28

    Abstract A two-dimensional numerical simulation is conducted to study natural convection flow and heat transfer characteristics in a square cavity filled with a micropolar fluid. The lower and upper walls of the cavity are respectively subject to isothermal heating and cooling while the temperatures of both vertical sides decrease linearly in the upwards direction. The Lattice-Boltzmann Method (LBM), with the multi-relaxation time (MRT) scheme for the collision process, is used to solve the problem with the objective to assess the ability and efficiency of this numerical method to describe the micropolar fluid behavior under the effect of the imposed thermal boundary… More >

  • Open Access

    ARTICLE

    MHD SLIP FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING PERMEABLE SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT SOURCE

    P. R. Sharmaa , Sushila Choudharya,* , O. D. Makindeb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.18

    Abstract Steady two dimensional laminar magnetohydrodynamic (MHD) slip flow and heat transfer of a viscous incompressible and electrically conducting fluid past over a flat exponentially non-conducting stretching porous sheet embedded in a porous medium with non uniform permeability in the presence of non uniform heat source is investigated. The governing equations of velocity and temperature distributions are solved numerically and the effects of different physical parameters are shown through graphs. The rate of shear stress and the rate of heat transfer at the sheet are derived, discussed numerically and their numerical values for various values of physical parameters are presented through… More >

  • Open Access

    ARTICLE

    STEADY-STATE TRANSPORT PHENOMENA ON INDUCED MAGNETIC FIELD MODELLING FOR NON-NEWTONIAN TANGENT HYPERBOLIC FLUID FROM AN ISOTHERMAL SPHERE WITH SORET AND DUFOUR EFFECTS

    A. Subba Raoa,*, L. Nagarajaa,b, M. Sudhakar Reddya , M. Surya Narayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.17

    Abstract This article investigates the theoretical steady magneto hydrodynamic heat flow of incompressible non-Newtonian Tangent Hyperbolic fluid flow over a sphere with Soret and Dufour effects. The governing coupled non-linear partial differential equations are reduced to non-similarity boundary layer equations using appropriate transformation and then solved using the finite difference Keller-Box method. The effect of various flow parameters on the velocity, temperature and concentration are analyzed and presented graphically. More >

  • Open Access

    ARTICLE

    IMPACT OF THERMAL RADIATION AND CHEMICAL REACTION ON UNSTEADY 2D FLOW OF MAGNETIC-NANOFLUIDS OVER AN ELONGATED PLATE EMBEDDED WITH FERROUS NANOPARTICLES

    S.P. Samrat, C. Sulochana* , G.P. Ashwinkumar

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.31

    Abstract This study reports the flow, thermal and concentration attributes of magnetic-nanofluids past an elongated plate with thermal radiation and chemical reaction. The flow considered is two-dimensional and time-dependent. The pressure gradient and ohmic heating terms are neglected in this analysis. The flow governing PDEs are transformed into ODEs using appropriate conversions. Further, the set of ODEs are solved analytically using perturbation technique. The flow quantities such as velocity, thermal and concentration fields are discussed under the influence of various pertinent parameters namely volume fraction of nanoparticle, magnetic field, stretching parameter, Soret number, radiation and chemical reaction with the assistance of… More >

Displaying 21-30 on page 3 of 148. Per Page