Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation

    M. Sridevi1, B. Shankar Goud2, Ali Hassan3,4,*, D. Mahendar5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 939-953, 2024, DOI:10.32604/fhmt.2024.050929 - 11 July 2024

    Abstract This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation. It is assumed that the medium under study is a grey, non-scattered fluid that both fascinates and transmits radiation. The leading equations are discretized using the finite difference method (FDM). Using MATLAB software, the impacts of flow factors on flow fields are revealed with particular examples in graphs and a table. In this regard, FDM results show that the velocity and temperature gradients increase with an increase of Eckert More >

  • Open Access

    ARTICLE

    Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell

    Anastasia Bushueva, Olga Vlasova, Denis Polezhaev*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 847-857, 2024, DOI:10.32604/fdmp.2024.048271 - 28 March 2024

    Abstract The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied. The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem. We consider miscible (water and glycerol) and immiscible (water and high-viscosity silicone oil PMS-1000) fluids under subsonic oscillations perpendicular to the interface. Observations show that the interface shape depends on the amplitude and frequency of oscillations. The interface is undisturbed only in the absence of oscillations. Under small amplitudes, the interface between water and glycerol widens… More >

  • Open Access

    ARTICLE

    Efficiency of a Modular Cleanroom for Space Applications

    Matthew R. Coburn1, Charlie Young2, Chris Smith2, Graham Schultz2, Miguel Robayo3, Zheng-Tong Xie1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 547-562, 2024, DOI:10.32604/fdmp.2023.028601 - 12 January 2024

    Abstract A prototype cleanroom for hazardous testing and handling of satellites prior to launcher encapsulation, satisfying the ISO8 standard has been designed and analyzed in terms of performances. Unsteady Reynolds Averaged Navier-Stokes (URANS) models have been used to study the related flow field and particulate matter (PM) dispersion. The outcomes of the URANS models have been validated through comparison with equivalent large-eddy simulations. Special attention has been paid to the location and shape of the air intakes and their orientation in space, in order to balance the PM convection and diffusion inside the cleanroom. Forming a More >

  • Open Access

    ARTICLE

    Analysis of Profile and Unsteady Flow Performance of Variable Base Circle Radius Scroll Expander

    Junying Wei*, Gang Li, Chenrui Zhang, Wenwen Chang, Jidai Wang

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 199-214, 2023, DOI:10.32604/fhmt.2023.041793 - 30 November 2023

    Abstract To study the complex internal flow field variation and output characteristics of a variable base radius scroll expander, this paper uses dynamic mesh techniques and computational fluid dynamics (CFD) methods to perform transient numerical simulations of a variable base radius scroll expander. Analysis of the flow field in the working cavity of a variable base radius scroll expander at different spindle angles and the effect of different profiles, speeds and pressures on the output characteristics of the scroll expander. The results of the study show that due to the periodic blocking of the inlet by… More >

  • Open Access

    ARTICLE

    Unsteady Flow and Heat Transfer of a Casson Micropolar Nanofluid over a Curved Stretching/Shrinking Surface

    Muhammad A. Sadiq1,2,*, Nadeem Abbas3, Haitham M. S. Bahaidarah4, Mohammad Amjad5

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 471-486, 2023, DOI:10.32604/fdmp.2022.021133 - 29 August 2022

    Abstract We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface, together with a heat transfer analysis of the same problem. The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate. Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass, momentum, energy and concentration is obtained accordingly. These are turned into ordinary differential equations using a similarity transformation. We show that these equations have More >

  • Open Access

    ARTICLE

    Modeling the Unsteady Flow of a Newtonian Fluid Originating from the Hole of an Open Cylindrical Reservoir

    Andrianantenaina Marcelin Hajamalala1,*, Ratovonarivo Noarijaona1, Zeghmati Belkacem2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1737-1748, 2022, DOI:10.32604/fdmp.2022.022047 - 27 June 2022

    Abstract This work deals with the modeling of the unsteady Newtonian fluid flow associated with an open cylindrical reservoir. This reservoir presents a hole on the right bottom wall. Fluid volume variation, heat and mass transfers are neglected. The unsteady governing equations are based on the conservation of mass and momentum. A finite volume technique is used to solve the non-dimensional equations and related boundary conditions. The algebraic system of equations resulting from the discretization process are solved by means of the THOMAS algorithm. For pressure-velocity coupling, the SIMPLE algorithm (Semi Implicit Method for Pressure Linked More >

  • Open Access

    ARTICLE

    LES Analysis of the Unsteady Flow Characteristics of a Centrifugal Pump Impeller

    Ting Zhang1, Denghao Wu1,2,*, Shijun Qiu2, Peijian Zhou1, Yun Ren3, Jiegang Mou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.5, pp. 1349-1361, 2022, DOI:10.32604/fdmp.2022.019617 - 27 May 2022

    Abstract Stall phenomena increase the complexity of the internal flow in centrifugal pump impellers. In order to tackle this problem, in the present work, a large eddy simulation (LES) approach is applied to determine the characteristics of these unstable flows. Moreover, a vorticity identification method is used to characterize quantitatively the vortex position inside the impeller and its influencing area. By comparing the outcomes of the numerical simulations and experimental results provided by a Particle Image Velocimetry (PIV) technique, it is shown that an apparent “alternating stall” phenomenon exists inside the impeller when relatively small flow More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF STEADY FLOW OF VORTEX FLOWMETER

    Yan-Juan Zhaoa,*, Yu-Liang Zhangb,† , Chen-Liang Zhangb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-7, 2021, DOI:10.5098/hmt.17.3

    Abstract Vortex flowmeter adopts advanced micro processing technology, which has the advantages of strong function, wide flow range, simple operation and maintenance, convenient installation and use. It is widely used in petroleum, chemical industry, electric power, metallurgy, urban gas supply and other industries to measure various gas flows. In order to study the characteristics of the inner flow passage of the vortex flowmeter and reach the normal working standard of the vortex flowmeter, this paper uses CFX to calculate the turbulent kinetic energy, eddy viscosity and flow velocity of the inner flow passage of the vortex… More >

  • Open Access

    ARTICLE

    A Study on the Unsteady Flow Characteristics and Energy Conversion in the Volute of a Pump-as-Turbine Device

    Senchun Miao1,2,*, Hongbiao Zhang1, Wanglong Tian1, Yinqiang Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1021-1036, 2021, DOI:10.32604/fdmp.2021.016925 - 08 September 2021

    Abstract To study the unsteady flow and related energy conversion process in the volute of a pump-as-turbine (PAT) device, six different working conditions have been considered. Through numerical calculation, the spatio-temporal variation of static pressure, dynamic pressure, total pressure and turbulent energy dissipation have been determined in each section of the volute. It is concluded that the reduction of the total power of two adjacent sections of the PAT volute is equal to the sum of the power lost by the fluid while moving from one section to the other and the power output from the More >

  • Open Access

    ARTICLE

    Influence of Tip Clearance on Unsteady Flow in Automobile Engine Pump

    Jiacheng Dai1, Jiegang Mou1, *, Tao Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 161-179, 2020, DOI:10.32604/fdmp.2020.06613 - 21 April 2020

    Abstract The automobile engine pump is an important part of the automobile cooling system, and has a direct influence on the engine performance. Based on the SST k-ω turbulence model, unsteady numerical simulation for an automobile engine pump with different tip clearances was carried out by Fluent. To study the flow field characteristics and pressure fluctuation, the characteristics of secondary flow distribution in volute are also analyzed. The result shows that the pressure fluctuation characteristics of the flow field show obvious periodic variation at different levels of tip clearances. The peak value of pressure fluctuation at… More >

Displaying 1-10 on page 1 of 28. Per Page