Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (364)
  • Open Access

    ARTICLE

    A Geometric Deformation Constrained Level Set Method for Structural Shape and Topology Optimization

    S.Y. Wang1,2, K.M. Lim2,3, B.C. Khoo2,3, M.Y. Wang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.18, No.3, pp. 155-182, 2007, DOI:10.3970/cmes.2007.018.155

    Abstract In this paper, a geometric deformation constrained level set method is presented as an effective approach for structural shape and topology optimization. A level set method is used to capture the motion of the free boundary of a structure. Furthermore, the geometric deformation of the free boundary is constrained to preserve the structural connectivity and/or topology during the level set evolution. An image-processing-based structural connectivity and topology preserving approach is proposed. A connected components labeling technique based on the 4-neighborhood connectivity measure and a binary image is used for the present region identification. The corresponding binary image after an exploratory… More >

  • Open Access

    ARTICLE

    Five Different Formulations of the Finite Strain Perfectly Plastic Equations

    Chein-Shan Liu 1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.17, No.2, pp. 73-94, 2007, DOI:10.3970/cmes.2007.017.073

    Abstract The primary objectives of the present exposition focus on five different types of representations of the plastic equations obtained from an elastic-perfectly plastic model by employing different corotational stress rates. They are (a) an affine nonlinear system with a finite-dimensional Lie algebra, (b) a canonical linear system in the Minkowski space, (c) a non-canonical linear system in the Minkowski space, (d) the Lie-Poisson bracket formulation, and (e) a two-generator and two-bracket formulation. For the affine nonlinear system we prove that the Lie algebra of the vector fields is so(5,1), which has dimensions fifteen, and by the Lie theory the superposition… More >

  • Open Access

    ARTICLE

    Dimple Fracture Simulation of Fracture Specimen under Different Constraint Conditions

    Masanori Kikuchi 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.2, pp. 49-60, 2006, DOI:10.3970/cmes.2006.011.049

    Abstract Three kinds of fracture specimens are tested under different constraint conditions. By the SEM(Scanning Electron Microscope) observation, it is shown that the roughness of fracture surface is different from each other largely. This is the effect of constraint condition. The dimple fracture process is simulated by the finite element method using Gurson’s constitutive equation, and the crack tip stress fields are obtained. The distributions of stress triaxiality qualitatively agree with the experimental results. The J-R curves obtained also qualitatively agree with those of experiments, and the fracture surface roughness is well simulated. More >

  • Open Access

    ARTICLE

    An Aspect of Hall-Petch Effect in Metallograin Structure

    Michihiko Nakagaki1, Shuji Takashima2, Ryosuke Matsumoto1, Noriyuki Miyazaki2

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.3, pp. 199-208, 2005, DOI:10.3970/cmes.2005.010.199

    Abstract The present paper focuses on the micromechanical phenomena occurring in the polycrystalline metal materials. Correlations between the material hardening and the plastic lattice dislocation were discussed with the presence of the grain boundary. The characteristic distribution of the plastic strain gradient is numerically recognized, and hence the validity of incorporating the strain gradient term in the constitutive law is demonstrated. Also, the modeling of the inclusion interface sliding and debonding was performed on the equivalent inclusion theory to develop the constitutive law for the composite. The sliding model is considered to be effective to model the superplastic behavior of highly… More >

  • Open Access

    ARTICLE

    Integrated Green's Function Molecular Dynamics Method for Multiscale Modeling of Nanostructures: Application to Au Nanoisland in Cu1

    V.K. Tewary2, D.T. Read2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.4, pp. 359-372, 2004, DOI:10.3970/cmes.2004.006.359

    Abstract An integrated Green's function and molecular dynamics technique is developed for multiscale modeling of a nanostructure in a semi-infinite crystal lattice. The equilibrium configuration of the atoms inside and around the nanostructure is calculated by using molecular dynamics that accounts for nonlinear interatomic forces. The molecular dynamics is coupled with the lattice statics Green's function for a large crystallite containing a million or more atoms. This gives a fully atomistic description of a nanostructure in a large crystallite that includes the effect of nonlinear forces. The lattice statics Green's function is then related to the anisotropic continuum Green's function that… More >

  • Open Access

    ARTICLE

    Asymptotic Postbuckling Analysis of Composite and Sandwich Structures via the Assumed Strain Solid Shell Element Formulation

    Jihan Kim1, Yong Hyup Kim1, Sung Won Lee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.3, pp. 263-276, 2004, DOI:10.3970/cmes.2004.006.263

    Abstract The Koiter's asymptotic method is combined with the assumed strain solid shell element formulation for postbuckling analysis of composite and sandwich structures. The assumed strain solid shell element is free of locking and the small angle assumption, and it allows multiple plies through the element thickness. While laminated composite structures are modeled with single element through the thickness, sandwich structures are modeled with three elements stacked through the thickness to model the face sheets and the core independently. The Koiter's method is used to trace initial postbuckling path. Subsequently, the Koiter's method is switched to the arc-length method to investigate… More >

  • Open Access

    ARTICLE

    Finite Rotations and large Strains in Finite Element Shell Analysis

    Y. Başar, O. Kintzel1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 217-230, 2003, DOI:10.3970/cmes.2003.004.217

    Abstract The objective of this contribution is the development of a finite element model for finite rotation and large strain analysis of thin walled shells involving geometry intersections. The shell configuration is described by a linear polynomial in the thickness coordinate. The director of the shell is multiplicatively decomposed into a stretching parameter and an inextensible unit vector whose rotation is accomplished by an updated-rotation formulation. A rotation vector with three independent components is used throughout the shell which permits advantageously to consider smooth shells and compound shells by a unified procedure. This formulation is introduced into an isoparametric four-node element.… More >

  • Open Access

    ARTICLE

    Analysis of Materials with Strain-Gradient Effects: A Meshless Local Petrov-Galerkin(MLPG) Approach, with Nodal Displacements only

    Z.Tang, S. Shen, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.1, pp. 177-196, 2003, DOI:10.3970/cmes.2003.004.177

    Abstract A meshless numerical implementation is reported of the 2-D Fleck-Hutchinson phenomenological strain-gradient theory, which fits within the framework of the Toupin-Mindlin theories and deals with first-order strain gradients and the associated work-conjugate higher-order stresses. From a mathematical point of view, the two-dimensional Toupin-Mindlin strain gradient theory is a generalization of the Poisson-Kirchhoff plate theories, involving, in addition to the fourth-order derivatives of the displacements, also a second-order derivative. In the conventional displacement-based approaches in FEM, the interpolation of displacement requires C$^{1}$ --continuity (in order to ensure convergence of the finite element procedure for 4$^{th}$ order theories), which inevitably involves very… More >

  • Open Access

    ARTICLE

    Nodal Constraint, Shear Deformation and Continuity Effects Related to the Modeling of Debonding of Laminates, Using Plate Elements

    E. H. Glaessgen1, W.T. Riddell2, I. S. Raju1

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.1, pp. 103-116, 2002, DOI:10.3970/cmes.2002.003.103

    Abstract The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models of the upper and lower surface of the delamination or debond that use two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler configurational modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom… More >

  • Open Access

    ARTICLE

    Lateral Plastic Collapse of Cylinders: Experiments and Modeling

    K. Nesnas1, A. Abdul-Latif2

    CMES-Computer Modeling in Engineering & Sciences, Vol.2, No.3, pp. 373-388, 2001, DOI:10.3970/cmes.2001.002.373

    Abstract Large plastic collapse of an identical pair of cylinders of various geometries having the same length and volume is studied under lateral compressive load. Superplastic material is employed as a representative material to simulate the classical engineering material behavior under high strain rate. The effects of the strain rate and the geometry of cylinders on the plastic collapse are taken into account. The experimental study is conducted using a structure in which one cylinder is superplastic and the other is steel (referred to as deformable and non-deformable situation "DND''). The actual structure (DND) and that one investigated experimentally by Abdul-Latif… More >

Displaying 331-340 on page 34 of 364. Per Page