Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (380)
  • Open Access

    CASE REPORT

    Case Report: Laubry-Pezzi Syndrome: Confronting the Lethal Nexus of Life-Threatening Complications in Resource Constrained Settings

    Hayatu Uma1,*, Abdulaziz Aminu1, Raghu Cherukupalli2, Femi Akindotun Akintomide1, Abdul Habu3, Aisha Aminu Lawal1, Adamu Mohammad1

    Congenital Heart Disease, Vol.19, No.6, pp. 635-645, 2024, DOI:10.32604/chd.2025.056641 - 27 January 2025

    Abstract Laubry-Pezzi syndrome (L-PS) is a rare congenital heart disease characterized by a ventricular septal defect (VSD) and aortic valve prolapse. These cardiac lesions predispose individuals to infective endocarditis (IE), a life-threatening complication, especially in resource-constrained settings. A 17-year-old male presented with a three-week history of fever and headache, and a one-week history of abdominal pain, vomiting, and diarrhea. On presentation, he appeared toxic, was febrile, tachypneic, tachycardic, and blood pressure of 120/30 mmHg, and heart sounds were S1, S2. Abdominal examination revealed generalized tenderness. A provisional diagnosis of typhoid sepsis with intestinal perforation was considered.… More >

  • Open Access

    PROCEEDINGS

    Enhancing the Interlayer and Flexural Performance with SHCC as Bonding Agents in 3D Concrete Printing

    Fei Teng1, Yiwei Weng1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012282

    Abstract 3D concrete printing (3DCP) has challenges in weak interlayer bond strength and steel reinforcement integration. Existing methods to improve the interlayer bond strength and integrate steel reinforcement have limitations in automatic operation and limited mechanical performance improvement. Strain hardening cementitious composites (SHCC), with the high tensile strength and tensile strain capacity, have the potential to achieve self-reinforced structures in 3DCP. Nevertheless, the wider adoption of SHCC in 3DCP is limited by the high cost of fibers and fiber agglomeration during printing.
    To fill the gap, this study investigates the use of SHCC as bonding agent of… More >

  • Open Access

    PROCEEDINGS

    Fabrication and Static/Dynamic Characterisation of a Hydrogel Candidate for Artificial Human Cartilage

    Ray Rui Zhong Chong1, Yangbo Guo1,*, Andy Yew2, Kenon Chua2, Victor P.W. Shim1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011768

    Abstract Arthritis, caused by degeneration and wear of articular cartilage, affects millions of patients worldwide. It can result in chronic pain, swelling, stiffness, and significantly affect the mobility of patients. Hence, identifying a material as an artificial alternative to replace damaged cartilage is of great benefit. Hydrogel, because of its high water content and similarity with the extracellular matrix of cartilage, has been explored for potential use as artificial cartilage. In this investigation, Polyvinyl Alcohol-Polyethylene Oxide (PVA/PEG) hydrogel with similar mechanical properties to human articular cartilage (e.g. compressive modulus, stress-strain response) was fabricated using a freeze-thaw… More >

  • Open Access

    PROCEEDINGS

    Compression Behavior of FRP-Confined Seawater Sea-Sand Coral Aggregates Concrete (SSCAC)

    Mianheng Lai1, R. Q. Lu1, Fengming Ren1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012824

    Abstract Coral aggregates have become a promising alternative to natural coarse aggregates in the offshore construction projects. In this paper, seawater sea-sand coral aggregates concrete (SSCAC) with 4 basic materials: cement, seawater, sea-sands and coral aggregates was produced. By adding various minerals fly ash (FA) and limestone powder (LSP) to partially replace cement, the performance of SSCAC can be improved while reducing the carbon dioxide emission. Due to the higher chloride ion content of SSCAC, fiber-reinforced polymer (FRP) was used to confined SSCAC instead of the traditional steel to solve the corrosion problem. This paper conducted More >

  • Open Access

    PROCEEDINGS

    A Study on the Extraction and Evaluation Method of Virtual Strain

    Peiyan Wang1,*, Haoyu Wang1, Minghui Liu2, Fuchao Liu1, Zhufeng Yue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011318

    Abstract The virtual test is supported by the physical test data, and a high-precision simulation model needs to be established to maximize the alignment between the simulation prediction results and the physical test data. It can replace other physical tests and achieve the goal of reducing the design cycle time and cost. However, due to the errors caused by the position and angle deviation of the strain gauge paste, as well as the sensitivity coefficient of the strain gauge and the wire, it is difficult for the simulation results to correspond to the test results in… More >

  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    PROCEEDINGS

    Multiscale Modeling and Application of Strain-Dependent Piezoresistive Behavior in Porous MWCNT/Polymer Nanocomposites

    Zefu Li1, Weidong Yang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011671

    Abstract For composite materials incorporating porous structures with multi-walled carbon nanotubes (MWCNTs), the effects of pores and MWCNT agglomeration significantly impact electrical conductivity. Theoretical modeling of the piezoresistive behavior is crucial for understanding the electromechanical response of porous MWCNT/polymer nanocomposites. Currently, there is limited theoretical modeling that considers the combined effects of porosity and MWCNT agglomeration on the electrical conductivity and piezoresistive performance of porous MWCNT/polymer composites. Addressing this gap, this paper presents a multiscale modeling approach for the strain-dependent piezoresistive behavior of porous MWCNT/polymer nanocomposites. The model considers the influence of porosity and MWCNT agglomeration, More >

  • Open Access

    PROCEEDINGS

    3D Printing of Electrically Conductive and Degradable Hydrogel for Epidermal Strain Sensor

    Binbin Guo1,2, Hui Ying Yang1,*, Jiaming Bai2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012673

    Abstract Due to excellent electrical conductivity, stretchability, and biocompatibility, electrically conductive hydrogels have been widely used in flexible wearable strain sensors. Generally, conductive fillers need to be integrated with the hydrogel matrix to impart electrical conductivity. According to the method of composite formation between electronic conductive fillers and hydrogel matrix, conductive hydrogels can be classified into embedded conductive and coated conductive hydrogels. Additionally, due to the intrinsic chemical and physical crosslinking networks, traditional hydrogels are not degradable, resulting in severe environmental pollution problems. Herein, we designed electrically conductive and degradable hydrogels for the epidermal strain sensor… More >

  • Open Access

    ARTICLE

    Physics-Constrained Robustness Enhancement for Tree Ensembles Applied in Smart Grid

    Zhibo Yang, Xiaohan Huang, Bingdong Wang, Bin Hu, Zhenyong Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3001-3019, 2024, DOI:10.32604/cmc.2024.053369 - 15 August 2024

    Abstract With the widespread use of machine learning (ML) technology, the operational efficiency and responsiveness of power grids have been significantly enhanced, allowing smart grids to achieve high levels of automation and intelligence. However, tree ensemble models commonly used in smart grids are vulnerable to adversarial attacks, making it urgent to enhance their robustness. To address this, we propose a robustness enhancement method that incorporates physical constraints into the node-splitting decisions of tree ensembles. Our algorithm improves robustness by developing a dataset of adversarial examples that comply with physical laws, ensuring training data accurately reflects possible More >

  • Open Access

    ARTICLE

    A Constrained Local Neighborhood Approach for Efficient Markov Blanket Discovery in Undirected Independent Graphs

    Kun Liu1,2, Peiran Li3, Yu Zhang1,*, Jia Ren1, Ming Li4, Xianyu Wang2, Cong Li2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2535-2555, 2024, DOI:10.32604/cmc.2024.052166 - 15 August 2024

    Abstract When learning the structure of a Bayesian network, the search space expands significantly as the network size and the number of nodes increase, leading to a noticeable decrease in algorithm efficiency. Traditional constraint-based methods typically rely on the results of conditional independence tests. However, excessive reliance on these test results can lead to a series of problems, including increased computational complexity and inaccurate results, especially when dealing with large-scale networks where performance bottlenecks are particularly evident. To overcome these challenges, we propose a Markov blanket discovery algorithm based on constrained local neighborhoods for constructing undirected… More >

Displaying 1-10 on page 1 of 380. Per Page