Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (362)
  • Open Access

    PROCEEDINGS

    Effects of Friction and Strain Hardening on ELS Mode II Interlaminar Fracture Test

    Chennian Shi1, Wu Xu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09634

    Abstract Accurate determination of the interlaminar mode II fracture toughness is much more difficult than that of mode I delamination, due to friction and crack closure. In this paper, A-scan is used to measure the crack growth length of end-loaded split (ELS) test through cyclic unloading and reloading. Interesting hysteresis loops are observed in the experimental load-displacement curve, which has not been fully understood by the existing literature. The frictional effect from the load fixture is analytically determined and numerically validated. It absorbs considerable energy during the creation of new crack surface, but has been overlooked. A simple method is proposed… More >

  • Open Access

    PROCEEDINGS

    Statistic Structural Damage Detection Of Functionally Graded EulerBernoulli Beams Based on Element Modal Strain Energy Sensitivity

    Zhongming Hu1,*, Leilei Chen1, Delei Yang1, Jichao Zhang1, Youyang Xin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.09340

    Abstract Functionally graded materials (FGMs), a kind of composite materials, were proposed to satisfy the requirements of thermal barrier materials initially [1-3]. Compared with traditional composites, the microstructure and mechanical characteristics of FGMs change continuously which make them present excellent performance in deformation resistance or toughness under extreme mechanical and thermal loadings [4]. Therefore, FGMs have been paid much attention and experienced rapid developments in the last decade. Nowadays, various structural components manufactured by FGMs have been used in extensive applications, such as aerospace, bioengineering, nuclear industries, civil constructions etc. [5-7]
    While, FG Euler-Bernoulli beams maybe suffer damage in practical… More >

  • Open Access

    PROCEEDINGS

    Dynamic Compression and Energy Absorption Behaviours of a Nanofluidic Liquid Foam

    Haiqi Feng1, Wei Huang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09347

    Abstract Intensive dynamic loadings are the main threats to the structural damage of protective structures and inner equipment, which has attracted a lot of attention in the field of advance impulsive resistance. Nanofluidic liquid foam (NLF) has become a novel and efficient energy absorption system due to its reusable energy absorption, ultra-high load transfer, and high energy absorption ratio [1-7]. In order to solve the current problem that the energy absorption mechanism of NLF is still unclear, this paper conducted a systematic experimental study on the dynamic compression and energy absorption behaviours of NLF. The quasi-static cyclic compression experiments with different… More >

  • Open Access

    ARTICLE

    Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques

    Rabar H. Faraj1,*, Hemn Unis Ahmed2,3, Hardi Saadullah Fathullah4, Alan Saeed Abdulrahman2, Farid Abed5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2925-2954, 2024, DOI:10.32604/cmes.2023.029392

    Abstract Plain concrete is strong in compression but brittle in tension, having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures, even when steel reinforcing is present. In order to address these challenges, short polymer fibers are randomly dispersed in a cement-based matrix to form a highly ductile engineered cementitious composite (ECC). This material exhibits high ductility under tensile forces, with its tensile strain being several hundred times greater than conventional concrete. Since concrete is inherently weak in tension, the tensile strain capacity (TSC) has become one of the most extensively researched properties. As a… More >

  • Open Access

    ARTICLE

    Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading

    Xinshan Zhuang*, Shunlei Xia, Ruijie Pan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 447-461, 2024, DOI:10.32604/fdmp.2023.042220

    Abstract Clay, as the most common soil used for foundation fill, is widely used in various infrastructure projects. The physical and mechanical properties of clay are influenced by the pore solution environment. This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations. Moreover, the development of cumulative strain in clay is analyzed, and a fitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration, consolidation stress ratio, and cycle number. In particular, the effects of the NaCl solution concentration and consolidation stress… More >

  • Open Access

    ARTICLE

    Low-Strain Damage Imaging Detection Experiment for Model Pile Integrity Based on HHT

    Ziyang Jiang1, Ziping Wang1,*, Kan Feng1, Yang Zhang2, Rahim Gorgin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 557-569, 2023, DOI:10.32604/sdhm.2023.042393

    Abstract With the advancement of computer and mathematical techniques, significant progress has been made in the 3D modeling of foundation piles. Existing methods include the 3D semi-analytical model for non-destructive low-strain integrity assessment of large-diameter thin-walled pipe piles and the 3D soil-pile dynamic interaction model. However, these methods have complex analysis procedures and substantial limitations. This paper introduces an innovative and streamlined 3D imaging technique tailored for the detection of pile damage. The approach harnesses the power of an eight-channel ring array transducer to capture internal reflection signals within foundation piles. The acquired signals are subsequently processed using the Hilbert-Huang Transform… More >

  • Open Access

    ARTICLE

    Adaptive H Filtering Algorithm for Train Positioning Based on Prior Combination Constraints

    Xiuhui Diao1, Pengfei Wang1,2,*, Weidong Li2, Xianwu Chu2, Yunming Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1795-1812, 2024, DOI:10.32604/cmes.2023.030008

    Abstract To solve the problem of data fusion for prior information such as track information and train status in train positioning, an adaptive H filtering algorithm with combination constraint is proposed, which fuses prior information with other sensor information in the form of constraints. Firstly, the train precise track constraint method of the train is proposed, and the plane position constraint and train motion state constraints are analysed. A model for combining prior information with constraints is established. Then an adaptive H filter with combination constraints is derived based on the adaptive adjustment method of the robustness factor. Finally, the positioning… More >

  • Open Access

    ARTICLE

    Automatic Aggregation Enhanced Affinity Propagation Clustering Based on Mutually Exclusive Exemplar Processing

    Zhihong Ouyang*, Lei Xue, Feng Ding, Yongsheng Duan

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 983-1008, 2023, DOI:10.32604/cmc.2023.042222

    Abstract Affinity propagation (AP) is a widely used exemplar-based clustering approach with superior efficiency and clustering quality. Nevertheless, a common issue with AP clustering is the presence of excessive exemplars, which limits its ability to perform effective aggregation. This research aims to enable AP to automatically aggregate to produce fewer and more compact clusters, without changing the similarity matrix or customizing preference parameters, as done in existing enhanced approaches. An automatic aggregation enhanced affinity propagation (AAEAP) clustering algorithm is proposed, which combines a dependable partitioning clustering approach with AP to achieve this purpose. The partitioning clustering approach generates an additional set… More >

  • Open Access

    ARTICLE

    Binary Oriented Feature Selection for Valid Product Derivation in Software Product Line

    Muhammad Fezan Afzal1, Imran Khan1, Javed Rashid1,2,3, Mubbashar Saddique4,*, Heba G. Mohamed5

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3653-3670, 2023, DOI:10.32604/cmc.2023.041627

    Abstract Software Product Line (SPL) is a group of software-intensive systems that share common and variable resources for developing a particular system. The feature model is a tree-type structure used to manage SPL’s common and variable features with their different relations and problem of Crosstree Constraints (CTC). CTC problems exist in groups of common and variable features among the sub-tree of feature models more diverse in Internet of Things (IoT) devices because different Internet devices and protocols are communicated. Therefore, managing the CTC problem to achieve valid product configuration in IoT-based SPL is more complex, time-consuming, and hard. However, the CTC… More >

  • Open Access

    ARTICLE

    Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint

    Kun Liu1,2, Peiran Li3, Yu Zhang1,*, Jia Ren1, Xianyu Wang2, Uzair Aslam Bhatti1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3257-3274, 2023, DOI:10.32604/cmc.2023.039430

    Abstract To obtain the optimal Bayesian network (BN) structure, researchers often use the hybrid learning algorithm that combines the constraint-based (CB) method and the score-and-search (SS) method. This hybrid method has the problem that the search efficiency could be improved due to the ample search space. The search process quickly falls into the local optimal solution, unable to obtain the global optimal. Based on this, the Particle Swarm Optimization (PSO) algorithm based on the search space constraint process is proposed. In the first stage, the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of… More >

Displaying 11-20 on page 2 of 362. Per Page