Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (364)
  • Open Access

    PROCEEDINGS

    Development of a Graded Lattice Structure Design and Optimization Method with Complex Boundary Surface Constraints

    Zhujiang Wang1,*, Yizhou Wang1, Bin Zhai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09242

    Abstract Graded lattice structures (GLS) are used widely in the areas of 3D printed sensors, personalized wearable devices, robotics, energy absorption, etc., and have a prospective future in the field of personalized medical devices. The large-scale applications of GLS-based personalized medical devices require a GLS design method that could handle the challenges caused by diverse boundary surface constraints and various requirements of graded mechanical properties [1,2], due to patient-specific care needs. In this work, the proposed automatic seed generation algorithm-based GLS design approach is a prospective solution to promote the wide application of GLS-based personalized medical devices [3,4]. The core idea… More >

  • Open Access

    PROCEEDINGS

    Effects of Pre-straining on Material Anisotropy in Sheet Metals

    Peidong Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010491

    Abstract The material anisotropy of an aluminum sheet alloy is determined by performing tensile tests at different angles with respect to the rolling direction (RD). To study the effect of pre-straining on the evolution of material anisotropy, a very wide sheet is stretched to different strains in the transverse direction (TD). The material in the central region is very close to a state of in-plane plane strain tension. Small tensile samples are cut from the central region of the pre-strained wide sample. Tensile tests are then performed on these small tensile samples. By comparing the differences in the flow stress vs.… More >

  • Open Access

    PROCEEDINGS

    Study on Dynamic Mechanical Properties of Q245R Steel at High Temperature

    Zhiyuan Liu1, Jue Zhu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09798

    Abstract In order to study the dynamic mechanical properties at high temperature and high strain rate [1] of Q245R steel after corrosion, the electrochemical accelerated corrosion test by constant current method and the high strain rate tensile test at high temperature [2] by High Temperature Synchronous Hopkinson Tensile test device were carried out. The test results show that Q245R steel has obvious strain rate strengthening effect and temperature softening effect, and under certain conditions, temperature becomes the main factor affecting the material properties. In order to consider the heat treatment and corrosion effects, the traditional Johnson-Cook [3-4] constitutive equation was improved,… More >

  • Open Access

    PROCEEDINGS

    Detection of Fatigue Cracks in Metal Material Based on Peridynamic Differential Operator

    Jiaming Liang1, Qizheng Wang1, Yile Hu1, Yin Yu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09307

    Abstract The most common form of damage in aircraft structures is fatigue damage. Accurate detection of fatigue crack tip is the cornerstone for prediction of crack propagation path and the basis for calculation of residual strength and stiffness. It is of great significance to improve structural fatigue resistance design. When simulating the crack growth problem based on the traditional method, the crack tip needs to be re-meshed so that resulting in low calculation efficiency. The expansion of fatigue cracks has a complex shape, for example, the fatigue crack damage on the aircraft skin often shows a curved shape. The current traditional… More >

  • Open Access

    PROCEEDINGS

    Hydrogels with Brain Tissue-Like Mechanical Properties in Complex Environments

    Jingyu Wang1,#, Yongrou Zhang4,#, Zuyue Lei1, Junqi Wang1, Yangming Zhao1, Taolin Sun3,*, Zhenyu Jiang1, Licheng Zhou1, Zejia Liu1, Yiping Liu1, Bao Yang1, Liqun Tang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2022.08829

    Abstract In surgical training applications and experimental research, brain tissues immersed in cerebrospinal fluid often involve very complex deformation and strain rate effects, which affects their reliability and stability. Thus, it is indispensable to develop a high-fidelity human brain tissue simulant material as a physical surrogate model to understand their mechanical behavior, such as traumatic brain injury (TBI). However, the reported simulant materials have not yet been able to compare and satisfy the above two mechanical properties. Here, we developed a novel composite hydrogel with brain tissue-like mechanical properties and investigated their mechanical behavior in a solution environment. The results demonstrate… More >

  • Open Access

    PROCEEDINGS

    A Phase-Field Fracture Model for Brittle Anisotropic Materials

    Zhiheng Luo1, Lin Chen2, Nan Wang1, Bin Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2022.08813

    Abstract Anisotropy is inherent in many materials, either because of the manufacturing process, or due to their microstructure, and can markedly influence the failure behavior. Anisotropic materials obviously possess both anisotropic elasticity and anisotropic fracture surface energy. Phase-field methods are elegant and mathematically well-grounded, and have become popular for simulating isotropic and anisotropic brittle fracture. Here, we developed a variational phase-field model for strongly anisotropic fracture, which accounts for the anisotropy both in elastic strain energy and in fracture surface energy, and the asymmetric behavior of cracks in traction and in compression. We implement numerically our higher-order phase-field model with mixed… More >

  • Open Access

    PROCEEDINGS

    Shear Localization in Polycrystalline Metal at High-Strain Rates with Dynamic Recrystallization: Crystal Plasticity Modeling and Texture Effect

    Qilin Xiong1,2,*, Wen An1,2, Chuanzhi Liu1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010044

    Abstract Shear localization is an important failure mode, or even the dominant mode in metals at high-strain rates. However, it is a great challenge to accurately predict the occurrence and evolution of shear localization in metals at the high-strain rate deformation. Here, a dislocation-based crystal plasticity constitutive model with a crucial mechanism of shear instability, namely dynamic recrystallization, was developed. The evolution equations of dislocation density and grain size in the process of dynamic recrystallization were proposed and incorporated into the new constitutive model. The threshold of the stored energy in crystals was used as the criterion for the occurrence of… More >

  • Open Access

    PROCEEDINGS

    Mechanism of Strain Hardening Of Magnesium Single-Crystals: Discrete Dislocation Dynamics Simulations

    Mao Li1, Xiaobao Tian1, Wentao Jiang1, Qingyuan Wang1, Haidong Fan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09981

    Abstract Poor ductility heavily limits the industrial application of magnesium (Mg) alloys, and pyramidal dislocations are an important deformation mode for ductility enhancement. In this work, discrete dislocation dynamics (DDD) simulations were performed to study the mechanical behavior and dislocation evolution of Mg singlecrystals compressed along c-axis. Especially, basal-transition and cross-slip algorithms of pyramidal dislocations were proposed and introduced in the DDD method. Simulation results show that basaltransition is an important mechanism for the strong strain hardening observed during c-axis compression of Mg single-crystals. Since the basal-transition events are thermally activated, increasing temperature leads to a high strain hardening rate.… More >

  • Open Access

    ARTICLE

    Strain-Rate Dependency of a Unidirectional Filament Wound Composite under Compression

    Stepan Konev1, Victor A. Eremeyev2,3, Hamid M. Sedighi4,5,*, Leonid Igumnov2, Anatoly Bragov2, Aleksandr Konstantinov2, Ayaulym Kuanyshova1, Ivan Sergeichev1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2149-2161, 2023, DOI:10.32604/cmes.2023.028179

    Abstract This article presents the results of experimental studies concerning the dynamic deformation and failure of a unidirectional carbon fiber reinforced plastic (T700/LY113) under compression. The test samples were manufactured through the filament winding of flat plates. To establish the strain rate dependencies of the strength and elastic modulus of the material, dynamic tests were carried out using a drop tower, the Split Hopkinson Pressure Bar method, and standard static tests. The samples were loaded both along and perpendicular to the direction of the reinforcing fiber. The applicability of the obtained samples for static and dynamic tests was confirmed through finite… More >

  • Open Access

    ARTICLE

    Development of Features for Early Detection of Defects and Assessment of Bridge Decks

    Ahmed Silik1,2,7, Xiaodong Wang3, Chenyue Mei3, Xiaolei Jin3, Xudong Zhou4, Wei Zhou4, Congning Chen4, Weixing Hong1,2, Jiawei Li1,2, Mingjie Mao1,2, Yuhan Liu1,2, Mohammad Noori5,6,*, Wael A. Altabey8,*

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 257-281, 2023, DOI:10.32604/sdhm.2023.023617

    Abstract Damage detection is an important area with growing interest in mechanical and structural engineering. One of the critical issues in damage detection is how to determine indices sensitive to the structural damage and insensitive to the surrounding environmental variations. Current damage identification indices commonly focus on structural dynamic characteristics such as natural frequencies, mode shapes, and frequency responses. This study aimed at developing a technique based on energy Curvature Difference, power spectrum density, correlation-based index, load distribution factor, and neutral axis shift to assess the bridge deck condition. In addition to tracking energy and frequency over time using wavelet packet… More > Graphic Abstract

    Development of Features for Early Detection of Defects and Assessment of Bridge Decks

Displaying 31-40 on page 4 of 364. Per Page