Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (362)
  • Open Access

    ARTICLE

    A New Partial Task Offloading Method in a Cooperation Mode under Multi-Constraints for Multi-UE

    Shengyao Sun1,2, Ying Du3, Jiajun Chen4, Xuan Zhang5, Jiwei Zhang6,*, Yiyi Xu7

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2879-2900, 2023, DOI:10.32604/cmc.2023.037483

    Abstract In Multi-access Edge Computing (MEC), to deal with multiple user equipment (UE)’s task offloading problem of parallel relationships under the multi-constraints, this paper proposes a cooperation partial task offloading method (named CPMM), aiming to reduce UE's energy and computation consumption, while meeting the task completion delay as much as possible. CPMM first studies the task offloading of single-UE and then considers the task offloading of multi-UE based on single-UE task offloading. CPMM uses the critical path algorithm to divide the modules into key and non-key modules. According to some constraints of UE-self when offloading tasks, it gives priority to non-key… More >

  • Open Access

    ARTICLE

    Study on Flow Field Simulation at Transmission Towers in Loess Hilly Regions Based on Circular Boundary Constraints

    Yongxin Liu1, Huaiwei Cao2, Puyu Zhao2, Gang Yang1, Hua Yu1, Fuwei He3, Bo He2,*

    Energy Engineering, Vol.120, No.10, pp. 2417-2431, 2023, DOI:10.32604/ee.2023.029596

    Abstract When using high-voltage transmission lines for energy transmission in loess hilly regions, local extreme wind fields such as turbulence and high-speed cyclones occur from time to time, which can cause many kinds of mechanical and electrical failures, seriously affecting the reliable and stable energy transmission of the power grid. The existing research focuses on the wind field simulation of ideal micro-terrain and actual terrain with mostly single micro-terrain characteristics. Model boundary constraints and the influence of constrained boundaries are the main problems that need to be solved to accurately model and simulate complex flow fields. In this paper, a flow… More >

  • Open Access

    ARTICLE

    Pancreas Segmentation Optimization Based on Coarse-to-Fine Scheme

    Xu Yao1,2, Chengjian Qiu1, Yuqing Song1, Zhe Liu1,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2583-2594, 2023, DOI:10.32604/iasc.2023.037205

    Abstract As the pancreas only occupies a small region in the whole abdominal computed tomography (CT) scans and has high variability in shape, location and size, deep neural networks in automatic pancreas segmentation task can be easily confused by the complex and variable background. To alleviate these issues, this paper proposes a novel pancreas segmentation optimization based on the coarse-to-fine structure, in which the coarse stage is responsible for increasing the proportion of the target region in the input image through the minimum bounding box, and the fine is for improving the accuracy of pancreas segmentation by enhancing the data diversity… More >

  • Open Access

    PROCEEDINGS

    Test and Simulation Researches on G550 Cold-Formed Steel at High Temperature and High Strain Rate

    Haocheng Jiang1, Jue Zhu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09586

    Abstract The tests of dynamic mechanical properties of materials at high temperature and high strain rate has always been a difficult issue [1]. In order to perform the dynamic mechanical properties of G550 cold-formed steel at high temperature and high strain rate, a set of Hopkinson Tension test device which can synchronize with high temperature control is developed for material test [2]. The stress-strain curves obtained from the tests were used to explore the influence of temperature and strain rate on the rheological properties of material by combining micro-analysis. The results show that G550 cold-formed steel has obvious strain rate hardening… More >

  • Open Access

    PROCEEDINGS

    A Second-Order Multiscale Fracture Model for the Brittle Materials with Periodic Distribution of Micro-Cracks

    Zhiqiang Yang1,*, Yipeng Rao2, Yi Sun1, Junzhi Cui2, Meizhen Xiang3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09513

    Abstract An effective fracture model is established for the brittle materials with periodic distribution of micro-cracks using the second-order multiscale asymptotic methods. The main features of the model are: (i) the secondorder strain gradient included in the fracture criterions and (ii) the strain energy and the Griffith criterions for micro-crack extensions established by the multiscale asymptotic expansions. Finally, the accuracy of the presented model is verified by the experiment data and some typical fracture problems. These results illustrate that the second-order fracture model is effective for analyzing the brittle materials with periodic distribution of micro-cracks. More >

  • Open Access

    PROCEEDINGS

    Giant Flexoelectric Effect of Polymeric Porous Composite and Its Applications

    Dongze Yan1, Jianxiang Wang2, Lihua Shao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09357

    Abstract Non-uniform strains produce a localized break in the microscopic inverse symmetry of materials, which leads to the electromechanical coupling phenomenon known as flexoelectricity in all dielectric materials. However, the size-dependent flexoelectric effect typically only manifests at small scales. Creating a considerable flexoelectric output at the macroscopic scale remains a bottleneck. Micro- and nano-porous materials own a significant number of randomly distributed microscopic pores and ligamentous structures, which can deform non-uniformly under arbitrary forms of macroscopic loading. Moreover, since the small size effect of flexoelectricity, the entire flexoelectricity of the micro- and nano-porous materials will be much more significant than that… More >

  • Open Access

    PROCEEDINGS

    Direct FE2 Method For Concurrent Multilevel Modeling of Piezoelectric Structures

    Leilei Chen2,3, Haozhi Li3,4, Lu Meng5, Pan Chen3, Pei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.010584

    Abstract In this paper, a Direct FE2 method is proposed to simulate the electromechanical coupling problem of inhomogeneous materials. The theoretical foundation for the proposed method, downscaling and upscaling principles, is the same as that of the FE2 method. The two-level simulation in the Direct FE2 method may be addressed in an integrative framework where macroscopic and microscopic degrees of freedom (DOFs) are related by multipoint constraints (MPCs) [1]. This critical characteristic permits simple implementation in commercial FE software, eliminating the necessity for recurrent data transfer between two scales [2-4]. The capabilities of Direct FE2 are validated using four numerical examples,… More >

  • Open Access

    PROCEEDINGS

    A Novel Topology Optimization Method for Local Relative Displacement Difference Minimization

    Jinyu Gu1, Jinping Qu1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09161

    Abstract In the topology optimization problem of mechanical structures, the optimization objectives are mainly focused on the compliance minimization, displacement minimization, stress minimization, and so on. However, in practical engineering, these kinds of optimization objectives do not meet all the requirements. Some structures, such as wind turbine blades and engine blades of aircrafts, are required to maintain a superior aerodynamic shape under external loads. This puts a higher requirement on the local deformation homogenization of the structure. Therefore, we proposed a topology optimization method for the minimization of local relative displacement differences considering stress constraints. First, we present a specific topology… More >

  • Open Access

    PROCEEDINGS

    Development of a Graded Lattice Structure Design and Optimization Method with Complex Boundary Surface Constraints

    Zhujiang Wang1,*, Yizhou Wang1, Bin Zhai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09242

    Abstract Graded lattice structures (GLS) are used widely in the areas of 3D printed sensors, personalized wearable devices, robotics, energy absorption, etc., and have a prospective future in the field of personalized medical devices. The large-scale applications of GLS-based personalized medical devices require a GLS design method that could handle the challenges caused by diverse boundary surface constraints and various requirements of graded mechanical properties [1,2], due to patient-specific care needs. In this work, the proposed automatic seed generation algorithm-based GLS design approach is a prospective solution to promote the wide application of GLS-based personalized medical devices [3,4]. The core idea… More >

  • Open Access

    PROCEEDINGS

    Effects of Pre-straining on Material Anisotropy in Sheet Metals

    Peidong Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010491

    Abstract The material anisotropy of an aluminum sheet alloy is determined by performing tensile tests at different angles with respect to the rolling direction (RD). To study the effect of pre-straining on the evolution of material anisotropy, a very wide sheet is stretched to different strains in the transverse direction (TD). The material in the central region is very close to a state of in-plane plane strain tension. Small tensile samples are cut from the central region of the pre-strained wide sample. Tensile tests are then performed on these small tensile samples. By comparing the differences in the flow stress vs.… More >

Displaying 21-30 on page 3 of 362. Per Page