Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (257)
  • Open Access

    ARTICLE

    An Integrated Suture Simulation System with Deformation Constraint Under A Suture Control Strategy

    Xiaorui Zhang1,2,3,*, Jiali Duan1, Jia Liu2, Norman I. Badler3

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1055-1071, 2019, DOI:10.32604/cmc.2019.03915

    Abstract Current research on suture simulation mainly focus on the construction of suture line, and existing suture simulation systems still need to be improved in terms of diversity, soft tissue effects, and stability. This paper presents an integrated liver suture surgery system composed of three consecutive suture circumstances, which is conducive to liver suture surgery training. The physically-based models used in this simulation are based on different mass-spring models regulated by a special constrained algorithm, which can improve the model accuracy, and stability by appropriately restraining the activity sphere of the surrounding mass nodes around the suture points. We also studied… More >

  • Open Access

    ARTICLE

    A Novel Time-aware Frame Adjustment Strategy for RFID Anti-collision

    Haipeng Chen1, Kexiong Liu2, Chunyang Ma3, Yu Han4, Jian Su5,*

    CMC-Computers, Materials & Continua, Vol.57, No.2, pp. 195-204, 2018, DOI:10.32604/cmc.2018.03592

    Abstract Recently, object identification with radio frequency identification (RFID) technology is becoming increasingly popular. Identification time is a key performance metric to evaluate the RFID system. The present paper analyzes the deficiencies of the state-of-the-arts algorithms and proposes a novel sub-frame-based algorithm with adaptive frame breaking policy to lower the tag identification time for EPC global C1 Gen2 UHF RFID standard. Through the observation of slot statistics in a sub-frame, the reader estimates the tag quantity and efficiently calculates an optimal frame size to fit the unread tags. Only when the expected average identification time in the calculated frame size is… More >

  • Open Access

    ARTICLE

    A Spark Scheduling Strategy for Heterogeneous Cluster

    Xuewen Zhang1, Zhonghao Li1, Gongshen Liu1,*, Jiajun Xu1, Tiankai Xie2, Jan Pan Nees1

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 405-417, 2018, DOI: 10.3970/cmc.2018.02527

    Abstract As a main distributed computing system, Spark has been used to solve problems with more and more complex tasks. However, the native scheduling strategy of Spark assumes it works on a homogenized cluster, which is not so effective when it comes to heterogeneous cluster. The aim of this study is looking for a more effective strategy to schedule tasks and adding it to the source code of Spark. After investigating Spark scheduling principles and mechanisms, we developed a stratifying algorithm and a node scheduling algorithm is proposed in this paper to optimize the native scheduling strategy of Spark. In this… More >

  • Open Access

    ARTICLE

    Research on SFLA-Based Bidirectional Coordinated Control Strategy for EV Battery Swapping Station

    Guo Zhao1,2, Jiang Guo1,2, Hao Qiang3

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 343-356, 2017, DOI:10.3970/cmc.2017.053.343

    Abstract As a good measure to tackle the challenges from energy shortages and environmental pollution, Electric Vehicles (EVs) have entered a period of rapid growth. Battery swapping station is a very important way of energy supply to EVs, and it is urgently needed to explore a coordinated control strategy to effectively smooth the load fluctuation in order to adopt the large-scale EVs. Considering bidirectional power flow between the station and power grid, this paper proposed a SFLA-based control strategy to smooth the load profile. Finally, compared simulations were performed according to the related data. Compared to particle swarm optimization (PSO) method,… More >

  • Open Access

    ARTICLE

    Change of Scale Strategy for the Microstructural Modelling of Polymeric Rohacell Foams

    J. Aubry1, P. Navarro1, S. Marguet1, J.-F. Ferrero1, O. Dorival2, L. Sohier3, J.-Y. Cognard3

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 21-47, 2014, DOI:10.3970/cmc.2014.039.021

    Abstract In this paper a numerical model dedicated to the simulation of the mechanical behaviour of polymeric Rohacell foams is presented. The finite elements model is developed at the scale of the microstructure idealized by a representative unit cell: the truncated octahedron. Observations made on micrographs of Rohacell lead to mesh this representative unit cell as a lattice of beam elements. Each beam is assigned a brittle linear elastic mechanical behaviour in tension and an elastoplastic behaviour in compression. The plasticity in compression is introduced as a way to mimic the buckling of the edges of the cells observed in experimental… More >

  • Open Access

    ARTICLE

    A Three-dimensional Adaptive Strategy with Uniform Background Grid in Element-free Galerkin Method for Extremely Large Deformation Problems

    Cheng-Te Chi1, Ming-Hsiao Lee2, Wen-Hwa Chen1,3

    CMC-Computers, Materials & Continua, Vol.24, No.3, pp. 239-256, 2011, DOI:10.3970/cmc.2011.024.239

    Abstract A novel three-dimensional adaptive element-free Galerkin method (EFGM) based on a uniform background grid is proposed to cope with the problems with extremely large deformation. On the basis of this uniform background grid, an interior adaptive strategy through an error estimation within the analysis domain is developed. By this interior adaptive scheme, additional adaptive nodes are inserted in those regions where the solution accuracy needs to be improved. As opposed to the fixed uniform background grid, these inserted nodes can move along with deformation to describe the particular local deformation of the structure. In addition, a triangular surface technique is… More >

  • Open Access

    ARTICLE

    An r-h Adaptive Strategy Based On Material Forces and Error Assessment

    R. Gangadharan1, A. Rajagopal1, S.M. Sivakumar1, 2

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 229-244, 2004, DOI:10.3970/cmc.2004.001.229

    Abstract A new r-h adaptive scheme is proposed and formulated. It involves a combination of the configurational force based r-adaption with weighted Laplacian smoothing and mesh enrichment by h-refinement. A Zienkiewicz-Zhu best guess stress error estimator is used in the h-refinement strategy. The best sequence for combining the effectiveness of r- and h- adaption has been evolved at in this study. A further reduction in the potential energy and the relative error norm of the system is found to be achieved with combined r-adaption and mesh enrichment (in the form h-refinement). Numerical study confirms that the proposed combined r-h adaption is… More >

Displaying 251-260 on page 26 of 257. Per Page