Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (259)
  • Open Access

    ARTICLE

    Failure Load of Frp Strengthened Masonry Walls: Experimental Results and Numerical Models

    G. Milani1, T. Rotunno2, E. Sacco3, A. Tralli1,4

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 29-50, 2006, DOI:10.3970/sdhm.2006.002.029

    Abstract Aim of the present work is the evaluation of the ultimate load bearing capacity of masonry panels reinforced with FRP strips. The investigation is developed performing both experimental and numerical studies. In particular, several panels subjected to different loading conditions are tested in the Tests Laboratory of the University of Florence (Italy). Then, numerical models based on combined homogenization and limit analysis techniques are proposed. The results obtained by numerical simulations are compared with experimental data. The good agreement obtained shows that the proposed numerical model can be applied for the evaluation of the ultimate load bearing capacity of reinforced… More >

  • Open Access

    ARTICLE

    Cohesive Strength and Separation Energy as Characteristic Parameters of Fracture Toughness and Their Relation to Micromechanics

    W. Brocks1

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 233-244, 2005, DOI:10.3970/sdhm.2005.001.233

    Abstract A review on phenomenological fracture criteria is given, based on the energy balance for cracked bodies, and the respective toughness parameters are related to micromechanical processes. Griffith's idea of introducing a "surface energy" and Barenblatt's concept of a "process zone" ahead of the crack tip build the foundation of modern cohesive models, which have become versatile tools for numerical simulations of crack extension. The cohesive strength and the separation energy used as phenomenological material parameters in these models appear to represent a physically significant characterisation of "fracture toughness". Micromechanical interpretations of these parameters can be derived, depending on the specific… More >

  • Open Access

    ARTICLE

    Characterization of Manmade and Recycled Cellulosic Fibers for Their Application in Building Materials

    Nadezda Stevulova1,*, Viola Hospodarova1, Adriana Estokova1, Eva Singovszka1, Marian Holub1, Stefan Demcak1, Jaroslav Briancin2, Anton Geffert3, Frantisek Kacik3, Vojtech Vaclavik4, Tomas Dvorsky4

    Journal of Renewable Materials, Vol.7, No.11, pp. 1121-1145, 2019, DOI:10.32604/jrm.2019.07556

    Abstract The aim of this study was to characterize two types of cellulosic fibers obtained from bleached wood pulp and unbleached recycled waste paper with different cellulose content (from 47.4 percent up to 82 percent), to compare and to analyze the potential use of the recycled fibers for building application, such as plastering mortar. Changes in the chemical composition, cellulose crystallinity and degree of polymerization of the fibers were found. The recycled fibers of lower quality showed heterogeneity in the fiber sizes (width and length), and they had greater surface roughness in comparison to high purity wood pulp samples. The high… More >

  • Open Access

    ARTICLE

    Mechanical Strength and Structural Basis of β2 Integrin to Mediate Neutrophil Accumulation on Liver Sinusoidal Endothelial Cells: A Study Using Atomic Force Microscopy and Molecular Dynamics Simulations

    Ning Li1, 2, 3, Xiao Zhang1, 2, Peiwen Li1, 2, Hao Yang1, 2, Chunfang Tong1, 2, Shouqin Lü1, 2, Yan Zhang1, 2, Zhiyi Ye3, Jun Pan3, *, Mian Long1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 263-279, 2018, DOI:10.31614/cmes.2018.04079

    Abstract Neutrophil (PMN) accumulation on liver sinusoidal endothelial cells (LSECs) is crucial to pathogen clearance and tissue damage in the liver sinusoids and controlled by a series of adhesion molecules expressed on the surface of PMNs and LSECs. The role of lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) in this process is still contentious. Here we compared the dynamic force spectra of the binding of β2 integrin to intercellular adhesion molecule-1 (ICAM-1) on LSECs using atomic force microscopy (AFM) and performed free and steered molecular dynamics (MD) simulations to analyze their structural bases of LFA-1- or Mac-1-I-domain and ICAM-1-D1 or… More >

  • Open Access

    ARTICLE

    A Study of the Suitable Measurement Location and Metrics for Assessing the Vibration Source Strength Based on the Field-Testing Data of Nanchang Underground Railway

    Ling Zhang1, 2, Xiaoyan Lei1, Jian Jiang2, Qingsong Feng1

    Sound & Vibration, Vol.52, No.5, pp. 22-27, 2018, DOI:10.32604/sv.2018.04058

    Abstract Underground railway vibration source strength is one of the key values used for environmental impact assessment and the evaluation of mitigation measure’s performance. However, currently there is no international standard of measuring the underground railway vibration source strength for such purposes. The available local standards and industrial guidelines do not agree on measurement locations as well as the metrics for presenting the source strength. This has caused many confusions. This paper aims to study the suitable measurement location and metrics using the data from a large scale field-testing carried out at the Nanchang underground railway (Metro Line 1, China) in… More >

  • Open Access

    ARTICLE

    Data-Driven Prediction of Mechanical Properties in Support of Rapid Certification of Additively Manufactured Alloys

    Fuyao Yan1, #, Yu hin Chan2,#, Abhinav Saboo3 , Jiten Shah4, Gregory B. Olson1, 3, Wei Chen2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 343-366, 2018, DOI:10.31614/cmes.2018.04452

    Abstract Predicting the mechanical properties of additively manufactured parts is often a tedious process, requiring the integration of multiple stand-alone and expensive simulations. Furthermore, as properties are highly location-dependent due to repeated heating and cooling cycles, the properties prediction models must be run for multiple locations before the part-level performance can be analyzed for certification, compounding the computational expense. This work has proposed a rapid prediction framework that replaces the physics-based mechanistic models with Gaussian process metamodels, a type of machine learning model for statistical inference with limited data. The metamodels can predict the varying properties within an entire part in… More >

  • Open Access

    ARTICLE

    Interfacial Strength of Cement Lines in Human Cortical Bone

    X. Neil Dong1,2, Xiaohui Zhang1, X. Edward Guo1

    Molecular & Cellular Biomechanics, Vol.2, No.2, pp. 63-68, 2005, DOI:10.3970/mcb.2005.002.063

    Abstract In human cortical bone, cement lines (or reversal lines) separate osteons from the interstitial bone tissue, which consists of remnants of primary lamellar bone or fragments of remodeled osteons. There have been experimental evidences of the cement line involvement in the failure process of bone such as fatigue and damage. However, there are almost no experimental data on interfacial properties of cement lines in human cortical bone. The objective of this study is to design and assemble a precision and computer controlled osteon pushout microtesting system, and to experimentally determine the interfacial strength of cement lines in human cortical bone… More >

  • Open Access

    ARTICLE

    Deformation and Failure of Single-Packets in Martensitic Steels

    T.M. Hatem1, M.A. Zikry1

    CMC-Computers, Materials & Continua, Vol.17, No.2, pp. 127-148, 2010, DOI:10.3970/cmc.2010.017.127

    Abstract A three-dimensional multiple-slip dislocation-density-based crystalline formulation, and specialized finite-element formulations were used to investigate dislocation-density evolution and crack behavior in single-packet lath martensite in high strength martensitic steels. The formulation is based on accounting for variant morphologies and orientations, and initial dislocations-densities that are uniquely inherent to martensitic microstructures. The effects of loading plane with respect to the orientation o the habit plane are investigated. Furthermore, the formulation was used to investigate single-packet microstructure mapped directly from SEM/EBSD images of maraging and ausformed martensitic steel alloys. This analysis underscores that shear pipe effects in martensitic steels, where the long direction… More >

  • Open Access

    ARTICLE

    Probabilistic and Possibilistic Analyses of the Strength of a Bonded Joint

    W. Jefferson Stroud1, T. Krishnamurthy1, Steven A. Smith2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.6, pp. 755-772, 2002, DOI:10.3970/cmes.2002.003.755

    Abstract The effects of uncertainties on the predicted strength of a single lap shear joint are examined. Probabilistic and possibilistic methods are used to account for uncertainties. A total of ten variables are assumed to be random, with normal distributions. Both Monte Carlo Simulation and the First Order Reliability Method are used to determine the probability of failure. Triangular membership functions with upper and lower bounds located at plus or minus three standard deviations are used to model uncertainty in the possibilistic analysis. The alpha cut (or vertex) method is used to evaluate the possibility of failure. Linear and geometrically nonlinear… More >

  • Open Access

    ARTICLE

    Safety Evaluation of Concrete Structures Based on a Novel Energy Criterion

    Qiang Tong1, Qingwen Ren1, *, Lei Shen 2, Linfei Zhang 2, Yin Yang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.1, pp. 33-58, 2018, DOI:10.3970/cmes.2018.114.033

    Abstract In this article, the post-peak softening stage of the constitutive relation and the elastic stiffness degradation of concrete are investigated, and a highly reasonable constitutive relation curve is proposed. At the material level, the energy change in the concrete failure process is studied based on the different stress-strain curves of concrete under uniaxial tension and compression. The concrete failure criterion based on elastic strain energy density is deemed suitable and consistent with the experimental phenomena. The hysteresis phenomenon (lags behind the peak strength) is also discussed. At the structure level, the strength reduction method is employed for the stability analysis,… More >

Displaying 181-190 on page 19 of 259. Per Page