Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    PROCEEDINGS

    Strengthening Mechanism and Deformation Behavior of Multi-Principal Element Alloys Using Multiscale Modelling and Simulation

    Weizheng Lu, Shuo Wang, Yang Chen, Jia Li*, Qihong Fang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.010711

    Abstract The multi-principal elemental alloys (MPEAs) exhibit excellent combinations of mechanical properties and radiation-resistant, are considered potential candidates for aerospace industries and advanced reactors. However, the quantitative contribution of microstructure on the strengthening mechanism remains challenging at the micro-scale, which greatly limits the long-term application. To address this, we developed a hierarchical multiscale simulation framework that covers potential physical mechanisms to explore the hardening effects of chemical short-range order (CSRO) and irradiation defects in MPEA. Firstly, by combining atomic simulation, discrete dislocation dynamics, and crystal plasticity finite element method, a hierarchical cross-scale model covering heterostructure lattice… More >

  • Open Access

    ARTICLE

    Strengthening Efficacy of External FRP Laminates on Aged Prestressed Beams with Unbonded Strands

    Phuong Phan-Vu*, Thanh Q. Nguyen, Phuoc Trong Nguyen

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1111-1125, 2025, DOI:10.32604/sdhm.2025.070179 - 05 September 2025

    Abstract As prestressed concrete (PC) structures age, long-term effects, e.g., creep, shrinkage, and prestress losses, compromise their structural performance. Strengthening these aged PC beams has become a crucial matter. One effective solution is to use externally bonded fiber-reinforced polymer (FRP) sheets; however, limited research has been done on aged PC beams using the FRP, especially for beams with unbonded prestressing strands (UPC beams). Therefore, this research investigates the flexural strengthening efficacy of external FRP sheets on aged UPC beams with unbonded tendons. Aging minimally affected the failure modes of UPC beams, with nonstrengthened beams showing flexural… More >

  • Open Access

    ARTICLE

    Investigation on Shear Performance of Concrete T-Beam Bridge Strengthened Using UHPC

    Zhiyong Wan1, Guozhang Luo2, Pailin Fang2, Menghui Ji2, Zhizhao Ou3, Shaohua He3,*

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1327-1341, 2025, DOI:10.32604/sdhm.2025.065177 - 05 September 2025

    Abstract This investigation examines the shear performance of concrete T-beams reinforced with thin layers of ultra-high performance concrete (UHPC) through an approach that integrates experimental evaluation, numerical simulation, and practical project verification. The research is based on a real bridge, and in accordance with the similarity principle, three reduced-scale T-beams with varying UHPC thicknesses were fabricated and tested to examine their failure modes and shear behaviors. A finite element model was created to enhance understanding of how UHPC reinforces these structures, while also considering the effects of material strength and arrangement. In addition to the laboratory… More >

  • Open Access

    ARTICLE

    Analytical and Numerical Study of the Buckling of Steel Cylindrical Shells Reinforced with Internal and External FRP Layers under Axial Compression

    Maria Tănase1,*, Gennadiy Lvov2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 717-737, 2025, DOI:10.32604/cmes.2025.067891 - 31 July 2025

    Abstract Steel cylindrical shells are widely used in engineering structures due to their high strength-to-weight ratio, but they are vulnerable to buckling under axial loads. To address this limitation, fiber-reinforced polymer (FRP) composites have emerged as promising materials for structural reinforcement. This study investigates the buckling behavior of steel cylindrical shells reinforced with inner and outer layers of polymer composite materials under axial compression. Using analytical and numerical modeling methods, the critical buckling loads for different reinforcement options were evaluated. Two-sided glass fiber reinforced plastic (GFRP) or carbon fiber reinforced plastic (CFRP) coatings, as well as… More >

  • Open Access

    REVIEW

    Strengthening Tomato Resilience: Harnessing Microbial Consortia to Overcome Biotic and Abiotic Stress

    Oumaima Benaissa1,2,3, Mohammed Taoussi1,4, Ikram Legrifi1,2, Zineb Belabess3, Abderrahim Lazraq2, Rachid Lahlali1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.5, pp. 1453-1495, 2025, DOI:10.32604/phyton.2025.064598 - 29 May 2025

    Abstract Tomato cultivation faces formidable challenges from both biotic and abiotic stressors, necessitating innovative and sustainable strategies to ensure crop resilience and yield stability. This comprehensive review delves into the evolving landscape of employing microbial consortia as a dynamic tool for the integrated management of biotic and abiotic stresses in tomato plants. The microbial consortium, comprising an intricate network of bacteria, fungi, and other beneficial microorganisms, plays a pivotal role in promoting plant health and bolstering defense mechanisms. Against biotic stressors, the consortium exhibits multifaceted actions, including the suppression of pathogenic organisms through antagonistic interactions and… More >

  • Open Access

    ARTICLE

    Anti-Crack Analysis and Reinforcement Design of Transverse Diaphragm Based on Layered Modeling Analysis Method

    Yuanyin Song1, Wenwei Wang2,*

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 549-574, 2025, DOI:10.32604/sdhm.2024.055382 - 03 April 2025

    Abstract To meticulously dissect the cracking issue in the transverse diaphragm concrete, situated at the anchor point of a colossal large-span, single cable plane cable-stayed bridge, this research paper adopts an innovative layered modeling analysis methodology for numerical simulations. The approach is structured into three distinct layers, each tailored to address specific aspects of the cracking phenomenon. The foundational first layer model operates under the assumption of linear elasticity, adhering to the Saint Venant principle. It narrows its focus to the crucial zone between the Bp20 transverse diaphragm and the central axis of pier 4’s support,… More >

  • Open Access

    PROCEEDINGS

    Development of a High-Temperature Resistance SLS Sand Mold Process for Titanium Alloy Casting

    Shouyin Zhang1,*, Zhifeng Xu1, Qiangwei Xiao2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012141

    Abstract 3D printing sand mold has been widely used in casting production. However, there exist some problems hindering its application for titanium alloy casting, such as the large amount of gas evolution, cannot withstand high temperature impact, easy to react with titanium alloy melt, etc. This work develops a high-temperature resistance SLS (selective laser sintering) sand mold process by introducing inorganic binder in two different ways, i.e., bi-binder SLS process and SLS infiltration process. After sintering at 1100 ℃, SLS sand mold or core possesses high tensile strength and can be used for titanium alloy casting. More >

  • Open Access

    PROCEEDINGS

    Nonlocal Crystal Plasticity Modeling of Heterostructured Materials

    Jianfeng Zhao1,*, Xu Zhang2, Guozheng Kang2, Michael Ziaser3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012582

    Abstract A continuum model of dislocation transport incorporating grain boundary transmission was developed within a dislocation-based crystal plasticity framework, which was then adopted to study the deformation mechanisms of gradient-structured material and bimodal-grained material. The nonlocal nature of the model on the slip system level enables the direct investigation of strain gradient effects caused by internal deformation heterogeneities. Furthermore, the interaction between dislocations and grain boundaries leads to the formation of pileups near grain boundaries, which is key to studying the grain size effects in polycrystals. Finite element implementation of the model for polycrystals with different… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanical Performance with Robust and Efficient Machine Learning-Assisted Path Planning for Additive Manufacturing of Continuous Fiber Composites

    Xinmeng Zha1, Huilin Ren1,*, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011371

    Abstract Additive manufacturing of continuous fiber composites is an emerging field that enables the tunable mechanical performance of composite structure by flexibly controlling the spatial layout of continuous fibers. Transverse isotropic strengthening is advantageous property of continuous fiber, which is favorable to align with the principal stress orientation. However, the accuracy and efficiency of traditional methods for calculating principal stress field are unguaranteed due to the inherent complexity and variability of geometries, material properties, and operational conditions in additive manufacturing. Therefore, a machine learning-assisted path planning method is proposed to robustly and efficiently generate the continuous… More >

Displaying 1-10 on page 1 of 31. Per Page