Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    ARTICLE

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

    Lisheng Luo1,*, Xinran Xie1, Yongqiang Zhang1, Xiaofeng Zhang2, Xinyue Cui1

    Journal of Renewable Materials, Vol.11, No.2, pp. 791-809, 2023, DOI:10.32604/jrm.2022.022539

    Abstract Traditional methods focus on the ultimate bending moment of glulam beams and the fracture failure of materials with defects, which usually depends on empirical parameters. There is no systematic theoretical method to predict the stiffness and shear distribution of glulam beams in elastic-plastic stage, and consequently, the failure of such glulam beams cannot be predicted effectively. To address these issues, an analytical method considering material nonlinearity was proposed for glulam beams, and the calculating equations of deflection and shear stress distribution for different failure modes were established. The proposed method was verified by experiments and numerical models under the corresponding… More > Graphic Abstract

    Stiffness and Shear Stress Distribution of Glulam Beams in Elastic-Plastic Stage: Theory, Experiments and Numerical Modelling

  • Open Access

    ARTICLE

    Stability Analysis of Landfills Contained by Retaining Walls Using Continuous Stress Method

    Yufang Zhang1, Yingfa Lu2,*, Yao Zhong2, Jian Li1, Dongze Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 357-381, 2023, DOI:10.32604/cmes.2022.020874

    Abstract An analytical method for determining the stresses and deformations of landfills contained by retaining walls is proposed in this paper. In the proposed method, the sliding resisting normal and tangential stresses of the retaining wall and the stress field of the sliding body are obtained considering the differential stress equilibrium equations, boundary conditions, and macroscopic forces and moments applied to the system, assuming continuous stresses at the interface between the sliding body and the retaining wall. The solutions to determine stresses and deformations of landfills contained by retaining walls are obtained using the Duncan-Chang and Hooke constitutive models. A case… More >

  • Open Access

    ARTICLE

    Bond of Seawater Scoria Aggregate Concrete to Stainless Reinforcement

    Lei Yin, Yijie Huang*, Yanfei Dang, Qing Wang

    Journal of Renewable Materials, Vol.11, No.1, pp. 209-231, 2023, DOI:10.32604/jrm.2023.020406

    Abstract

    This study investigates the bond between seawater scoria aggregate concrete (SSAC) and stainless reinforcement (SR) through a series of pull-out tests. A total of 39 specimens, considering five experimental parameters—concrete type (SSAC, ordinary concrete (OC) and seawater coral aggregate concrete (SCAC)), reinforcement type (SR, ordinary reinforcement (OR)), bond length (3, 5 and 8 times bar diameter), concrete strength (C25 and C30) and concrete cover thickness (42 and 67 mm)—were prepared. The typical bond properties (failure pattern, bond strength, bond-slip curves and bond stress distribution, etc.) of seawater scoria aggregate concrete-stainless reinforcement (SSAC-SR) specimen were systematically studied. Generally, the failure pattern… More > Graphic Abstract

    Bond of Seawater Scoria Aggregate Concrete to Stainless Reinforcement

  • Open Access

    ARTICLE

    Stress Distribution in Composites with Co-Phase Periodically Curved Two Neighboring Hollow Fibers

    Resat Kosker1,*, Ismail Gulten2

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 967-983, 2021, DOI:10.32604/cmc.2021.017857

    Abstract In this paper, stress distribution is examined in the case where infinite length co-phase periodically curved two neighboring hollow fibers are contained by an infinite elastic body. The midline of the fibers is assumed to be in the same plane. Using the three-dimensional geometric linear exact equations of the elasticity theory, research is carried out by use of the piecewise homogeneous body model. Moreover, the body is assumed to be loaded at infinity by uniformly distributed normal forces along the hollow fibers. On the inter-medium between the hollow fibers and matrix surfaces, complete cohesion conditions are satisfied. The boundary form… More >

  • Open Access

    ARTICLE

    The Effect of Surface Pit Treatment on Fretting Fatigue Crack Initiation

    Qingming Deng1,2, Xiaochun Yin1, Magd Abdel Wahab3,4,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 659-673, 2021, DOI:10.32604/cmc.2020.012878

    Abstract This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis. The processed specimen refers to artificially adding a cylindrical pit to its contact surface. Then, the contact radius between the pad and the specimen is controlled by adjusting the radius of the pit. The stress distribution and slip amplitude of the contact surface under different contact geometries are compared. The critical plane approach is used to predict the crack initiation life and to evaluate the effect of processed specimen on its fretting fatigue performance. Both crack initiation life and angle can… More >

  • Open Access

    ARTICLE

    Numerical Study on Rock Breaking Mechanism of Supercritical CO2 Jet Based on Smoothed Particle Hydrodynamics

    Xiaofeng Yang1, *, Yanhong Li1, Aiguo Nie1, Sheng Zhi2, Liyuan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1141-1157, 2020, DOI:10.32604/cmes.2020.08538

    Abstract Supercritical carbon dioxide (Sc-CO2) jet rock breaking is a nonlinear impact dynamics problem involving many factors. Considering the complexity of the physical properties of the Sc-CO2 jet and the mesh distortion problem in dealing with large deformation problems using the finite element method, the smoothed particle hydrodynamics (SPH) method is used to simulate and analyze the rock breaking process by Sc-CO2 jet based on the derivation of the jet velocity-density evolution mathematical model. The results indicate that there exisits an optimal rock breaking temperature by Sc-CO2. The volume and length of the rock fracture increase with the rising of the… More >

  • Open Access

    ARTICLE

    Microstructural Modeling and Multiscale Mechanical Properties Analysis of Cancellous Bone

    Zhiqiang Huang1, 2, Yufeng Nie1, *, Yiqiang Li1

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 245-265, 2020, DOI:10.32604/cmc.2020.06284

    Abstract This paper is devoted to the microstructure geometric modeling and mechanical properties computation of cancellous bone. The microstructure of the cancellous bone determines its mechanical properties and a precise geometric modeling of this structure is important to predict the material properties. Based on the microscopic observation, a new microstructural unit cell model is established by introducing the Schwarz surface in this paper. And this model is very close to the real microstructure and satisfies the main biological characteristics of cancellous bone. By using the unit cell model, the multiscale analysis method is newly applied to predict the mechanical properties of… More >

  • Open Access

    ABSTRACT

    Numerical Analysis of Motion and Stress Distribution of Circulating Tumor Cells in Micro Vessels

    Peng Jing1, Xiaolong Wang1, Shigeho Noda2, Xiaobo Gong1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 36-37, 2019, DOI:10.32604/mcb.2019.07111

    Abstract The motion of circulating tumor cells (CTCs) in microcirculatory system is one of the critical steps during cancer metastasis. The moving behavior and stress distribution of circulating tumor cells under different geometry and flow conditions are important basis for studying the adhesion between circulating tumor cells and vessel walls. In the present work, the motion and deformation of circulating tumor cells in capillary tubes are numerically studied using the immersed boundary method (IBM). The membrane stress distribution of CTCs in confined tubes are investigated with under vessel diameters, hematocrit (Ht) values and capillary numbers (Ca). The results show that the… More >

  • Open Access

    ABSTRACT

    The Influence of Enhanced External Counterpulsation Intervention on the Biomechanical Stress Distribution of Advanced Plaque: A 3D FSI Study Based on in vivo Animal Experiment

    Yahui Zhang1, Hui Wang1,2, Zhouming Mai1,2, Jianhang Du1,2,3,*, Guifu Wu1,2,3

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 85-86, 2019, DOI:10.32604/mcb.2019.05836

    Abstract Enhanced external counter pulsation (EECP) is an effective therapy to provide beneficial assistance for the failing heart by reducing cardiac afterload and increasing blood flow perfusion noninvasively. The technique of EECP involves the use of the EECP device to inflate and deflate a series of compression cuffs wrapped around the patient’s calves, lower thighs, and upper thighs. As the result, the enhanced flow perfusion is derived from the device’s propelling blood from veins of lower body to arteries of upper body and increases the blood supply for the important organs and brain. In the ACCF/AHA Guideline and ESC Guideline on… More >

  • Open Access

    ARTICLE

    The Effect of Longitudinal Pre-Stretch and Radial Constraint on the Stress Distribution in the Vessel Wall: A New Hypothesis

    Wei Zhang1,2, Carly Herrera1, Satya N. Atluri1, Ghassan S. Kassab2,3

    Molecular & Cellular Biomechanics, Vol.2, No.1, pp. 41-52, 2005, DOI:10.3970/mcb.2005.002.041

    Abstract It is well known that blood vessels shorten axially when excised. This is due to the perivascular tethering constraint by side branches and the existence of pre-stretch of blood vessels at the \textit {in situ} state. Furthermore, vessels are radially constrained to various extents by the surrounding tissues at physiological loading. Our hypothesis is that the axial pre-stretch and radial constraint by the surrounding tissue homogenizes the stress and strain distributions in the vessel wall. A finite element analysis of porcine coronary artery and rabbit thoracic aorta based on measured material properties, geometry, residual strain and physiological loading is used… More >

Displaying 1-10 on page 1 of 21. Per Page