Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Numerical Exploration on Load Transfer Characteristics and Optimization of Multi-Layer Composite Pavement Structures Based on Improved Transfer Matrix Method

    Guo-Zhi Li1, Hua-Ping Wang1,2,*, Si-Kai Wang1, Jing-Cheng Zhou1, Ping Xiang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3165-3195, 2025, DOI:10.32604/cmes.2025.072750 - 23 December 2025

    Abstract Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity. A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential, as it offers intuitive insights into parametric influences and facilitates enhanced structural performance. This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures. By establishing a two-dimensional composite pavement model, it investigates load transfer characteristics and validates the accuracy through finite element simulation. The proposed method offers a straightforward analytical approach… More >

  • Open Access

    ARTICLE

    Multi-Objective Structural Optimization of Composite Wind Turbine Blade Using a Novel Hybrid Approach of Artificial Bee Colony Algorithm Based on the Stochastic Method

    Ramazan Özkan1,2, Mustafa Serdar Genç1,3,*, İlker Kayali1,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3349-3380, 2025, DOI:10.32604/cmes.2025.072519 - 23 December 2025

    Abstract The optimization of turbine blades is crucial in improving the efficiency of wind energy systems and developing clean energy production models. This paper presented a novel approach to the structural design of small-scale turbine blades using the Artificial Bee Colony (ABC) Algorithm based on the stochastic method to optimize both mass and cost (objective functions). The study used computational fluid dynamics (CFD) and structural analysis to consider the fluid-structure interaction. The optimization algorithm defined several variables: structural constraints, the type of composite material, and the number of composite layers to form a mathematical model. The More >

  • Open Access

    ARTICLE

    Framework for the Structural Analysis of Fractional Differential Equations via Optimized Model Reduction

    Inga Telksniene1, Tadas Telksnys2, Romas Marcinkevičius3, Zenonas Navickas2, Raimondas Čiegis1, Minvydas Ragulskis2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2131-2156, 2025, DOI:10.32604/cmes.2025.072938 - 26 November 2025

    Abstract Fractional differential equations (FDEs) provide a powerful tool for modeling systems with memory and non-local effects, but understanding their underlying structure remains a significant challenge. While numerous numerical and semi-analytical methods exist to find solutions, new approaches are needed to analyze the intrinsic properties of the FDEs themselves. This paper introduces a novel computational framework for the structural analysis of FDEs involving iterated Caputo derivatives. The methodology is based on a transformation that recasts the original FDE into an equivalent higher-order form, represented as the sum of a closed-form, integer-order component G(y) and a residual… More >

  • Open Access

    ARTICLE

    Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory

    Si-Kai Wang1, Ti-Cai Wang1, Di-Fei Yi2, Jia Rui3, Peng-Fei Cao4, Hua-Ping Wang1,5,*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1411-1432, 2025, DOI:10.32604/sdhm.2025.070034 - 17 November 2025

    Abstract As a key storage facility, the structural safety of large oil tanks is directly related to the stable operation of the energy system. The static pressure caused by the change of liquid level is one of the main loads in the service process of storage tanks, which determines the structural deformation and damage risk. To explore the structural deformation properties under the change of liquid levels and provide a theoretical basis for the prevention and control of damage risk, this paper systematically analyzes the mechanical response of storage tanks under the pressures induced by different… More > Graphic Abstract

    Influence Mechanism of Liquid Level on Oil Tank Structures and Damage Risk Prevention Based on Shell Theory

  • Open Access

    REVIEW

    Topology, Size, and Shape Optimization in Civil Engineering Structures: A Review

    Ahmed Manguri1,2,3,*, Hogr Hassan3, Najmadeen Saeed3,4, Robert Jankowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 933-971, 2025, DOI:10.32604/cmes.2025.059249 - 27 January 2025

    Abstract The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications. Structural optimization approaches seek to determine the optimal design, by considering material performance, cost, and structural safety. The design approaches aim to reduce the built environment’s energy use and carbon emissions. This comprehensive review examines optimization techniques, including size, shape, topology, and multi-objective approaches, by integrating these methodologies. The trends and advancements that contribute to developing more efficient, cost-effective, and reliable structural designs were identified. The review also discusses emerging technologies, such as machine learning applications with More >

  • Open Access

    PROCEEDINGS

    Tapering Optimization of Double-Double Laminates

    Dan Wang1,*, Zhoucheng Su1, Sridhar Narayanaswamy1, Stephen Tsai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011821

    Abstract Double-Double (DD) laminates are novel layups made up of two groups of angle plies. The assembly of local sub-ply blocks provides homogenized material properties and can achieve the unique laminate layup for the whole structure with different sub-ply block repeats. However, the thickness thinning will bring buckling forward leading to structural failure. Here we work on searching the optimal thickness tapering strategy of DD laminates to achieve the highest buckling load with the given structure weight. The DD laminate is modelled as a shell with the thickness for each element defined as different repeats of More >

  • Open Access

    PROCEEDINGS

    Design of Honeycomb Sandwich Structures with Curved Edge Cores for Optimal Thermal Buckling Strength

    Zheng Wu1, Pai Liu1, Zhan Kang1, Yiqiang Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011044

    Abstract Honeycomb sandwich structures (HSSs) consist of lightweight cores arranged in periodic polygons [1] between two face sheets. They are widely used in the aerospace industry due to their lightweight but superior strength [2] and energy absorption [3]. As extremely high temperatures might be applied, the sandwich structures may suffer from thermal buckling failure [4] due to thin face walls [5]. This paper designs a new type of HSSs for pursuing optimal thermal buckling strength. The design idea is to replace the vertical straight walls in the honeycomb cores with curved walls. An optimization problem is… More >

  • Open Access

    ARTICLE

    Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device

    Yanhui Zhang1, Lianhua Ma1, Hailiang Su1,2,3,*, Jirong Qin2, Zhining Chen2, Kaibiao Deng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1961-1980, 2024, DOI:10.32604/cmes.2023.045570 - 29 January 2024

    Abstract In this paper, to present a lightweight-developed front underrun protection device (FUPD) for heavy-duty trucks, plain weave carbon fiber reinforced plastic (CFRP) is used instead of the original high-strength steel. First, the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective. For studying the design capability of carbon fiber composite materials, we investigate the effects of TC-33 carbon fiber diameter (D), fiber yarn width (W) and height (H), and fiber yarn density (N) on the front underrun protective beam of carbon fiber composite materials. Based on… More >

  • Open Access

    ARTICLE

    Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator

    Weiting Jiang*, Tingni He*, Chongyang Wang, Weiguo Pan, Jiang Liu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1447-1461, 2023, DOI:10.32604/fdmp.2023.025269 - 30 January 2023

    Abstract Computational Fluid Dynamics (CFD) is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine. First, numerical simulations of the high-temperature and low-temperature channels are performed and, the calculated results are compared with experimental data (to verify the reliability of the numerical method). Second, the flow field structure of the low-temperature side channel is critically analyzed, leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven, and its resistance is significantly higher than that in the high-temperature side. Therefore, five More > Graphic Abstract

    Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator

  • Open Access

    ARTICLE

    A Smooth Bidirectional Evolutionary Structural Optimization of Vibrational Structures for Natural Frequency and Dynamic Compliance

    Xiaoyan Teng1, Qiang Li1, Xudong Jiang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2479-2496, 2023, DOI:10.32604/cmes.2023.023110 - 23 November 2022

    Abstract A smooth bidirectional evolutionary structural optimization (SBESO), as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load. A weighted function is introduced to regulate the mass and stiffness matrix of an element, which has the inefficient element gradually removed from the design domain as if it were undergoing damage. Aiming at maximizing the natural frequency of a structure, the frequency optimization formulation is proposed using the SBESO technique. The effects of various weight functions including constant, linear and More >

Displaying 1-10 on page 1 of 28. Per Page