Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Hierarchal Decomposition for the Structure-Fluid-Electrostatic Interaction in a Microelectromechanical System

    Daisuke Ishihara1,2, Tomoyoshi Horie1, Tomoya Niho1, Akiyoshi Baba3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.6, pp. 429-452, 2015, DOI:10.3970/cmes.2015.108.429

    Abstract In this study, a hierarchal decomposition is proposed to solve the structure- fluid-electrostatic interaction in a microelectromechanical system (MEMS). In the proposed decomposition, the structure-fluid-electrostatic interaction is partitioned into the structure-fluid interaction and the electrostatic field using the iteratively staggered method, and the structure-fluid interaction is split into the structurefluid velocity field and the fluid pressure field using the projection method. The proposed decomposition is applied to a micro cantilever beam actuated by the electrostatic force in air. It follows from the comparisons among the numerical and experimental results that the proposed method can predict the MEMS vibration characteristics accurately. More >

Displaying 1-10 on page 1 of 1. Per Page