Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (100)
  • Open Access

    ARTICLE

    Comparative Evaluation of Flow Quantification across the Atrioventricular Valve in Patients with Functional Univentricular Heart after Fontan’s Surgery and Healthy Controls: Measurement by 4D Flow Magnetic Resonance Imaging and Streamline Visualization

    Hoi Lam She*, Arno A.W. Roest, Emmeline E. Calkoen, Pieter J. van den Boogaard, Rob J. van der Geest, Mark G. Hazekamp§, Albert de Roos, Jos J.M. Westenberg

    Congenital Heart Disease, Vol.12, No.1, pp. 40-48, 2017

    Abstract Purpose. To evaluate the inflow pattern and flow quantification in patients with functional univentricular heart after Fontan’s operation using 4D flow magnetic resonance imaging (MRI) with streamline visualization when compared with the conventional 2D flow approach.
    Method. Seven patients with functional univentricular heart after Fontan’s operation and twenty-three healthy controls underwent 4D flow MRI. In two orthogonal two-chamber planes, streamline visualization was applied, and inflow angles with peak inflow velocity (PIV) were measured. Transatrioventricular flow quantification was assessed using conventional 2D multiplanar reformation (MPR) and 4D MPR tracking the annulus and perpendicular to the streamline inflow at PIV, and they… More >

  • Open Access

    ARTICLE

    A Patient-Specific Computational Fluid Dynamic Model of Middle Cerebral Artery Aneurysm Before and One Year After Surgery

    Shicheng He1, Juhui Qiu1, Wanling Liu1, Tieying Yin1, Dechuan Zhang2,*, Donghua Liao3,4, Haijun Zhang5, Yuxia Yin5, Guixue Wang1,*

    Molecular & Cellular Biomechanics, Vol.17, No.2, pp. 63-74, 2020, DOI:10.32604/mcb.2020.08750

    Abstract Computational fluid dynamics (CFD) has been widely used for studying intracranial aneurysm hemodynamics, while its use for guiding clinical strategy is still in development. In this study, CFD simulations helped inform treatment decision for a middle cerebral artery (MCA) aneurysm case was investigated. A patient with a 10.4 × 9.8 mm aneurysm attached with a small aneurysm at the edge of the trifurcation in the left MCA was included in this study. For removing the MCA aneurysm, two scenarios were considered: Plan-A involved clipping the small aneurysm and Plan-B involved clipping the whole aneurysm. A suitable treatment plan was decided… More >

  • Open Access

    ABSTRACT

    Multi-Modality Image-Based Modeling Approach for Cardiovascular Disease: Simulation, Assessment, Prediction, and Virtual Surgery

    Dalin Tang1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.1, pp. 11-11, 2019, DOI:10.32604/mcb.2019.05170

    Abstract Medical imaging and image-based modeling have made considerable progress in recent years in cardiovascular research, such as identifying atherosclerotic plaque morphological and mechanical risk factors which may be used in developing improved patient screening strategies, and performing virtual heart surgery seeking optimal surgical procedures for best post-surgical outcome. We will report recent progress in using multi-modality image-based models to predict vulnerable plaque progression and vulnerability change. In particular, we will report our recent results using IVUS+OCT data to obtain more accurate stress/strain calculations. Inflammation and cap erosion will affect cap material properties. If OCT image could provide inflammation and erosion… More >

  • Open Access

    ARTICLE

    Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor

    Nan Shen1,2, Dabajyoti Datta1, Chris B. Schaffer1,3,4,5, Eric Mazur1,6

    Molecular & Cellular Biomechanics, Vol.2, No.1, pp. 17-26, 2005, DOI:10.3970/mcb.2005.002.017

    Abstract Analysis of cell regulation requires methods for perturbing molecular processes within living cells with spatial discrimination on the nanometer-scale. We present a technique for ablating molecular structures in living cells using low-repetition rate, low-energy femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we ablate cellular material inside the cell through nonlinear processes. We selectively removed sub-micrometer regions of the cytoskeleton and individual mitochondria without altering neighboring structures or compromising cell viability. This nanoscissor technique enables non-invasive manipulation of the structural machinery of living cells with several-hundred-nanometer resolution. Using this approach, we unequivocally demonstrate that mitochondria are… More >

  • Open Access

    ARTICLE

    Combining Smaller Patch, RV Remodeling and Tissue Regeneration in Pulmonary Valve Replacement Surgery Design May Lead to Better Post-Surgery RV Cardiac Function for Patients with Tetralogy of Fallot

    Zhedian Zhou1, Tal Geva2, Rahul H. Rathod2, Alexander Tang2, Chun Yang3, Kristen L. Billiar4, Dalin Tang1,*,3, Pedro del Nido5

    Molecular & Cellular Biomechanics, Vol.15, No.2, pp. 99-115, 2018, DOI: 10.3970/mcb.2018.00558

    Abstract Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late onset right ventricle (RV) failure. The current surgical approach, which includes pulmonary valve replacement/insertion (PVR), has yielded mixed results. A computational parametric study using 7 patient-specific RV/LV models based on cardiac magnetic resonance (CMR) data as "virtual surgery" was performed to investigate the impact of patch size, RV remodeling and tissue regeneration in PVR surgery design on RV cardiac functions. Two patch sizes, three degrees of scar trimming (RV… More >

  • Open Access

    ARTICLE

    Effect of Meniscus Replacement Fixation Technique on Restoration of Knee Contact Mechanics and Stability

    D.D. D’Lima*, P.C. Chen, O. Kessler, H.R. Hoenecke*, C.W. Colwell Jr.∗§

    Molecular & Cellular Biomechanics, Vol.8, No.2, pp. 123-134, 2011, DOI:10.3970/mcb.2011.008.123

    Abstract The menisci are important biomechanical components of the knee. We developed and validated a finite element model of meniscal replacement to assess the effect of surgical fixation technique on contact behavior and knee stability. The geometry of femoral and tibial articular cartilage and menisci was segmented from magnetic resonance images of a normal cadaver knee using MIMICS (Materialise, Leuven, Belgium). A finite element mesh was generated using HyperWorks (Altair Inc, Santa Ana, CA). A finite element solver (Abaqus v6.9, Simulia, Providence, RI) was used to compute contact area and stresses under axial loading and to assess stability (reaction force generated… More >

  • Open Access

    ARTICLE

    Two-Layer Passive/Active Anisotropic FSI Models with Fiber Orientation: MRI-Based Patient-Specific Modeling of Right Ventricular Response to Pulmonary Valve Insertion Surgery

    Dalin Tang*, Chun Yang, Tal Geva‡,§, Pedro J. del Nido

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 159-176, 2007, DOI:10.3970/mcb.2007.004.159

    Abstract A single-layer isotropic patient-specific right/left ventricle and patch (RV/LV/Patch) combination model with fluid-structure interactions (FSI) was introduced in our previous papers to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. In this paper, an active anisotropic model with two-layer structure for ventricle wall and tissue fiber orientation was introduced to improve previous isotropic model for more accurate assessment of RV function and potential application in PVR surgery and patch design. A material-stiffening approach was used to model active heart contraction. The computational models were used to conduct ``virtual (computational)'' surgeries and test the hypothesis that… More >

  • Open Access

    ARTICLE

    An Integrated Suture Simulation System with Deformation Constraint Under A Suture Control Strategy

    Xiaorui Zhang1,2,3,*, Jiali Duan1, Jia Liu2, Norman I. Badler3

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1055-1071, 2019, DOI:10.32604/cmc.2019.03915

    Abstract Current research on suture simulation mainly focus on the construction of suture line, and existing suture simulation systems still need to be improved in terms of diversity, soft tissue effects, and stability. This paper presents an integrated liver suture surgery system composed of three consecutive suture circumstances, which is conducive to liver suture surgery training. The physically-based models used in this simulation are based on different mass-spring models regulated by a special constrained algorithm, which can improve the model accuracy, and stability by appropriately restraining the activity sphere of the surrounding mass nodes around the suture points. We also studied… More >

  • Open Access

    ARTICLE

    A Virtual Puncture Surgery System Based on Multi-Layer Soft Tissue and Force Mesh

    Xiaorui Zhang1,3,*, Jiali Duan1, Lifeng Zhu2, Ladislav Kavan3

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 505-519, 2018, DOI:10.32604/cmc.2018.01842

    Abstract Puncture is a common operation in surgery, which involves all kinds of tissue materials with different geometry and mechanical properties. As a new cross-disciplinary research area, Virtual Surgery (VS) makes simulation of soft tissue in puncture operation possible in virtual environment. In this paper, we introduce a VS-based puncture system composed by three-layer soft tissue, simulated with spherical harmonic function (SHF), which is covered with a force mesh, constructed by mass spring model (MSM). The two models are combined together with a parameter of SHF named surface radius, which provides MSM with real-time deformation data needed in force calculation. Meanwhile,… More >

  • Open Access

    ARTICLE

    A Novel Twist Deformation Model of Soft Tissue in Surgery Simulation

    Xiaorui Zhang1,2,3,*, Pengpai Wang1, Wei Sun2, Norman I. Badler3

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 297-319, 2018, DOI:10.3970/cmc.2018.01764

    Abstract Real-time performance and accuracy are two most challenging requirements in virtual surgery training. These difficulties limit the promotion of advanced models in virtual surgery, including many geometric and physical models. This paper proposes a physical model of virtual soft tissue, which is a twist model based on the Kriging interpolation and membrane analogy. The proposed model can quickly locate spatial position through Kriging interpolation method and accurately compute the force change on the soft tissue through membrane analogy method. The virtual surgery simulation system is built with a PHANTOM OMNI haptic interaction device to simulate the torsion of virtual stomach… More >

Displaying 91-100 on page 10 of 100. Per Page