Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31)
  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 08 January 2026

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    Simulation of Temperature Field in Oil-Based Drill Cuttings Pyrolysis Furnace for Shale Gas

    Pu Liu, Guangwei Bai*, Wei Li, Chuanhua Ge

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1847-1864, 2025, DOI:10.32604/fhmt.2025.070378 - 31 December 2025

    Abstract To address the issue of uneven temperature distribution in shale gas oil-based drill cuttings pyrolysis furnaces, a numerical model was developed using Fluent software. The effects of nitrogen flow rate, heating tube spacing, and furnace dimensions on the internal temperature field were thoroughly analyzed from a mechanistic perspective. The results indicated that non-uniform radiation from the heating tubes and flow disturbances induced by the nitrogen stream were the primary causes of localized heat concentration. Under no-load conditions, the maximum deviation between simulated and on-site measured temperatures was 1.5%, validating the model’s accuracy. Furthermore, this study More >

  • Open Access

    ARTICLE

    Unsteady Flow Dynamics and Phase Transition Behavior of CO2 in Fracturing Wellbores

    Zihao Yang1,*, Jiarui Cheng1, Zefeng Li2, Yirong Yang1, Linghong Tang1, Wenlan Wei1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2149-2176, 2025, DOI:10.32604/fdmp.2025.067739 - 30 September 2025

    Abstract This study presents a two-dimensional, transient model to simulate the flow and thermal behavior of CO2 within a fracturing wellbore. The model accounts for high-velocity flow within the tubing and radial heat exchange between the wellbore and surrounding formation. It captures the temporal evolution of temperature, pressure, flow velocity, and fluid density, enabling detailed analysis of phase transitions along different tubing sections. The influence of key operational and geological parameters, including wellhead pressure, injection velocity, inlet temperature, and formation temperature gradient, on the wellbore’s thermal and pressure fields is systematically investigated. Results indicate that due to… More >

  • Open Access

    ARTICLE

    Hydration Heat Analysis and Crack Control of Composite Box Girders with Corrugated Steel Webs in Prefabrication

    Xuefeng Wang1,2, Haiqing Cao1,2, Ke Jiao3,*, Aoxiang Li1,2, Zhongwei Li1,2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 985-1010, 2025, DOI:10.32604/sdhm.2025.061554 - 30 June 2025

    Abstract This study examines the temperature field distribution characteristics and temperature effects during the prefabrication of composite box girders with corrugated steel webs (CBGCSWs), aiming to provide practical recommendations for controlling temperature-induced cracking and technical guidance for concrete mix proportions and placement processes. Based on field measurement data, a three-dimensional finite element model was developed to simulate the temperature effects at critical locations during the prefabrication phase. By varying the concrete mix proportions, initial casting temperature, and ambient temperature, the study elucidates the variation patterns of the temperature field during precast placement. The results show that… More >

  • Open Access

    ARTICLE

    Analysis of Air Exchange System Influence on Thermal and Concentration Modes in the Local Working Area under Radiant Heating Conditions

    Boris Borisov, Geniy Kuznetsov, Vyacheslav Maksimov*, Tatiana Nagornova, Felix Salikhov

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1597-1612, 2024, DOI:10.32604/fhmt.2024.056758 - 19 December 2024

    Abstract One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective (water) heating systems with systems, the main part of which are gas infrared emitters. But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas, but also ensuring acceptable concentrations of carbon dioxide, which is formed during the… More > Graphic Abstract

    Analysis of Air Exchange System Influence on Thermal and Concentration Modes in the Local Working Area under Radiant Heating Conditions

  • Open Access

    ARTICLE

    Cooling and Optimization in the Groove of the Outer Rotor Hub Motor

    Zhuo Liu, Yecui Yan*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1443-1460, 2024, DOI:10.32604/fhmt.2024.056091 - 30 October 2024

    Abstract The external rotor hub motor adopts direct drive mode, no deceleration drive device, and has a compact structure. Its axial size is smaller than that of a deceleration-driven hub motor, which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle. Because of the limited special working environment and performance requirements, the hub motor has a small internal space and a large heat generation, so it puts forward higher requirements for heat dissipation capacity. For the external rotor hub motor, a new type of in-tank water-cooled structure of hub motor… More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Proppant Migration in the Non-Uniform Temperature Field during Supercritical CO2 Fracturing

    Boyu Liu1, Jun Yao1,*, Hai Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011600

    Abstract The temperature gradient between the geological formation and the injected supercritical CO2 (Sc-CO2) initiates heat transfer processes, leading to a non-uniform temperature field within the fracture. This spatial thermal variation induces fluctuations in the density and viscosity of Sc-CO2. Moreover, the non-uniform density distribution of Sc-CO2 leads to varying degrees of volume expansion or shrinkage, influencing fluid flow velocities within the fractures. This study integrates heat transfer and fluid leak-off models into the Eulerian-Eulerian two-fluid framework to systematically investigate the collective impacts of Sc-CO2's density, viscosity, and density-induced volumetric alterations on the proppant transport process under varied pumping… More >

  • Open Access

    ARTICLE

    Analysis of the Influence of Oxygen Enrichment in the Blast on Temperature Field and NO Generation near the Burner in Reheating Furnace

    Xiaojun Li, Fuyong Su*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 719-732, 2024, DOI:10.32604/fhmt.2024.051950 - 11 July 2024

    Abstract In order to study the effect of oxygen-enriched combustion technology on the temperature field and NO emission in the continuous heating furnace, this paper studies the oxygen-enriched combustion of a pushing steel continuous heating furnace in a domestic company. This study utilizes numerical simulation method, establishes the mathematical models of flow, combustion and NO generation combustion process in the furnace and analyzes the heat transfer process and NO generation in the furnace under different air oxygen content and different wind ratio. The research results show that with the increase of oxygen content in the air, More > Graphic Abstract

    Analysis of the Influence of Oxygen Enrichment in the Blast on Temperature Field and NO Generation near the Burner in Reheating Furnace

  • Open Access

    ARTICLE

    Calculation of Mass Concrete Temperature and Creep Stress under the Influence of Local Air Heat Transfer

    Heng Zhang1,2, Chao Su2,*, Xiaohu Chen1, Zhizhong Song1, Weijie Zhan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2977-3000, 2024, DOI:10.32604/cmes.2024.047972 - 08 July 2024

    Abstract Temperature-induced cracking during the construction of mass concrete is a significant concern. Numerical simulations of concrete temperature have primarily assumed that the concrete is placed in an open environment. The problem of heat transfer between the air and concrete has been simplified to the concrete’s heat dissipation boundary. However, in the case of tubular concrete structures, where air inlet and outlet are relatively limited, the internal air temperature does not dissipate promptly to the external environment as it rises. To accurately simulate the temperature and creep stress in tubular concrete structures with enclosed air spaces… More >

  • Open Access

    ARTICLE

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

    Zhengrong Shi1,3, Jie Ren1, Tao Zhang1,3,*, Yanming Shen2,*

    Energy Engineering, Vol.121, No.3, pp. 681-702, 2024, DOI:10.32604/ee.2023.045238 - 27 February 2024

    Abstract Building energy consumption and building carbon emissions both account for more than 20% of their total national values in China. Building employing phase change material (PCM) for passive temperature control shows a promising prospect in meeting the comfort demand and reducing energy consumption simultaneously. However, there is a lack of more detailed research on the interaction between the location and thickness of PCM and indoor natural convection, as well as indoor temperature distribution. In this study, the numerical model of a passive temperature-controlled building integrating the developed PCM module is established with the help of… More > Graphic Abstract

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

Displaying 1-10 on page 1 of 31. Per Page