Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access


    Correlation Analysis of Wind Turbine Temperature Rise and Exergy Efficiency Based on Field-Path Coupling

    Caifeng Wen1,2, Qiang Wang1,*, Yang Cao1, Liru Zhang1,2, Wenxin Wang3, Boxin Zhang1, Qian Du1

    Energy Engineering, Vol.120, No.7, pp. 1603-1619, 2023, DOI:10.32604/ee.2023.027074

    Abstract To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems, the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator. The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field. By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor, the temperature field is solved, and the global temperature distribution of the generator, considering the influence of end windings, is obtained. By changing… More >

  • Open Access



    B. Gangadhara Raoa,*, K. Elangovanb, K. Hema Chandra Reddya, M. Arulprakasajothic

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-8, 2021, DOI:10.5098/hmt.16.15

    Abstract In this research, the 3-D coupled thermal electric model analyses on a sandwich bus bar are presented for the comparison of F Class & B Class of insulation. IEC defines the maximum temperature limit at the conductor based on the class of insulation. This paper gives the clarity on the variation on the current density i.e, the size of the conductor by varying the class of insulation. The study is conducted on tin plated 2000 A sandwich busbar system. The sandwich bus bar is made of copper conductors with tin plating and enclosed by an aluminum cover along its length.… More >

  • Open Access


    Analysis of Temperature Rise Characteristics and Fatigue Damage Degree of ACSR Broken Strand

    Jun Zhang1, Xiaobin Li1, Long Zhao2,*, Zixin Li1, Shuo Wang1, Pan Yao1, Pengfei Dai2

    Energy Engineering, Vol.120, No.3, pp. 617-631, 2023, DOI:10.32604/ee.2022.024855

    Abstract In this paper, the research on ACSR temperature of broken strand and fatigue damage after broken strand is carried out. Conduct modeling and Analysis on the conductor through Ansoft Maxwell software. The distribution of magnetic force lines in the cross section of the conductor after strand breaking and the temperature change law of the conductor with the number of broken strands are analyzed. A model based on electromagnetic theory is established to analyze the distribution of magnetic lines of force in the cross section of the conductor after strand breaking and the temperature variation law of the conductor with the… More >

  • Open Access


    Characteristic and Thermal Analysis of Permanent Magnet Eddy Current Brake

    Jiahao Li, Guolai Yang*, Quanzhao Sun

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.3, pp. 1011-1031, 2021, DOI:10.32604/cmes.2021.013982

    Abstract In this paper, the subdomain analysis model of the eddy current brake (ECB) is established. By comparing with the finite element method, the accuracies of the subdomain model and the finite element model are verified. Furthermore, the resistance characteristics of radial, axial, and Halbach arrays under impact load are calculated and compared. The axial array has a large braking force coefficient but low critical velocity. The radial array has a low braking force coefficient but high critical velocity. The Halbach array has the advantages of the first two arrays. Not only the braking force coefficient is large, but also the… More >

  • Open Access


    A Simulation of the Response of a Sounding Temperature Sensor Based on the Combination of a Genetic Algorithm and Computational Fluid Dynamics

    Juanjuan Wang, Yajuan Jia*, Jiangping Nan

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.6, pp. 1161-1175, 2020, DOI:10.32604/fdmp.2020.010328

    Abstract The present study aims at improving the accuracy of weather forecast by providing useful information on the behavior and response of a sounding temperature sensor. A hybrid approach relying on Computational Fluid Dynamics and a genetic algorithm (GA) is used to simulate the system represented by the bead thermistor and the surrounding air. In particular, the influence of different lead angles, sensor lead length, and lead number is considered. The results have shown that when the length of the lead wire of the bead thermistor is increased, the radiation temperature rise is reduced; when the number of lead wire is… More >

  • Open Access


    Analysis of Temperature Rise in High-Speed Permanent Magnet Synchronous Traction Motors by Coupling the Equivalent Thermal Circuit Method and Computational Fluid Dynamics

    Jungang Jia*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.5, pp. 919-933, 2020, DOI:10.32604/fdmp.2020.09566

    Abstract To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors, the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics. Also, a cooling strategy is proposed to solve the problem of temperature rise, which is expected to prolong the service life of these devices. First, the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed, then the fluid flow for the considered motor is analyzed, and the equivalent thermal circuit method is… More >

  • Open Access


    Analysis on Simulation of Quasi-Steady Molecular Statics Nanocutting Model and Calculation of Temperature Rise During Orthogonal Cutting of Single-Crystal Copper

    Zone-Ching Lin1, Ying-Chih Hsu1

    CMC-Computers, Materials & Continua, Vol.27, No.2, pp. 143-178, 2012, DOI:10.32604/cmc.2012.027.143

    Abstract This paper uses quasi-steady molecular statics method to carry out simulation of nanoscale orthogonal cutting of single-crystal copper workpiece by the diamond tools with different edge shapes. Based on the simulation results, this paper analyzes the cutting force, equivalent stress and strain, and temperature field. For the three-dimensional quasi-steady molecular statics nanocutting model used by this paper, when the cutting tool moves on a workpiece, displacement of atoms is caused due to the effects of potential on each other. After a small distance that each atom moves is directly solved by the calculated trajectory of each atom, the concept of… More >

  • Open Access


    Steady-State Temperature Rise in Coated Halfspaces and Halfplanes

    Michael J. Rodgers1, Leon M. Keer, Herbert S. Cheng

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.4, pp. 483-496, 2002, DOI:10.3970/cmes.2002.003.483

    Abstract The steady-state temperature rise due to frictional heating on the surface of coated halfspaces and halfplanes is described by closed form expressions in the Fourier transformed frequency domain. These frequency response functions (FRFs) include the effects of the coating and the speed of the moving heat source and apply for all Peclet number regimes. Analytical inversion of these expressions for several special cases shows the Green's functions as infinite series of images, which may be costly and slowly convergent. Also, the influence coefficients integrated from these Green's functions are not available in closed form. Applying fast Fourier transform (FFT) methods… More >

Displaying 1-10 on page 1 of 8. Per Page