Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process

    Bo Zhu1,#, Enzhi Dong1,#, Zhonghua Cheng1,*, Xianbiao Zhan2, Kexin Jiang1, Rongcai Wang 3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.069194 - 10 November 2025

    Abstract With the increasing complexity of industrial automation, planetary gearboxes play a vital role in large-scale equipment transmission systems, directly impacting operational efficiency and safety. Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment, leading to excessive maintenance costs or potential failure risks. However, existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes. To address these challenges, this study proposes a novel condition-based maintenance framework for planetary gearboxes. A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals, which were then processed using a… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Method Based on RF-WGAN-TCN

    Ao Zhang1, Hongzhen Xu1,*, Ruxin Liu2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5159-5181, 2025, DOI:10.32604/cmc.2025.067241 - 23 October 2025

    Abstract Credit card fraud is one of the primary sources of operational risk in banks, and accurate prediction of fraudulent credit card transactions is essential to minimize banks’ economic losses. Two key issues are faced in credit card fraud detection research, i.e., data category imbalance and data drift. However, the oversampling algorithm used in current research suffers from excessive noise, and the Long Short-Term Memory Network (LSTM) based temporal model suffers from gradient dispersion, which can lead to loss of model performance. To address the above problems, a credit card fraud detection method based on Random… More >

  • Open Access

    ARTICLE

    Health Monitoring and Maintenance of Urban Road Infrastructure Using Temporal Convolutional Networks with Adaptive Activation

    Zongqi Li1, Hongwei Zhao2,*, Jianyong Guo2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 345-357, 2025, DOI:10.32604/cmes.2025.066175 - 31 July 2025

    Abstract Monitoring the condition of road infrastructure is crucial for maintaining its structural integrity and ensuring safe transportation. This study proposes a deep learning framework based on Temporal Convolutional Networks (TCN) integrated with Adaptive Parametric Rectified Linear Unit (APReLU) to predict future road subbase strain trends. Our model leverages time-series strain data collected from embedded triaxial sensors within a national highway, spanning August 2021 to June 2022, to forecast strain dynamics critical for proactive maintenance planning. The TCN-APReLU architecture combines dilated causal convolutions to capture long-term dependencies and APReLU activation functions to adaptively model nonlinear strain More >

  • Open Access

    ARTICLE

    EEG Scalogram Analysis in Emotion Recognition: A Swin Transformer and TCN-Based Approach

    Selime Tuba Pesen, Mehmet Ali Altuncu*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5597-5611, 2025, DOI:10.32604/cmc.2025.066702 - 30 July 2025

    Abstract EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses. However, the high dimensionality of EEG signals and their continuous variability in the time-frequency plane make their analysis challenging. Therefore, advanced deep learning methods are needed to extract meaningful features and improve classification performance. This study proposes a hybrid model that integrates the Swin Transformer and Temporal Convolutional Network (TCN) mechanisms for EEG-based emotion recognition. EEG signals are first converted into scalogram images using Continuous Wavelet Transform (CWT), and classification is performed on these images. Swin Transformer is… More >

  • Open Access

    ARTICLE

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

    Jungpil Shin1,*, Md. Al Mehedi Hasan2, Md. Maniruzzaman3, Satoshi Nishimura1, Sultan Alfarhood4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3615-3638, 2025, DOI:10.32604/cmes.2025.064588 - 30 June 2025

    Abstract Activity recognition is a challenging topic in the field of computer vision that has various applications, including surveillance systems, industrial automation, and human-computer interaction. Today, the demand for automation has greatly increased across industries worldwide. Real-time detection requires edge devices with limited computational time. This study proposes a novel hybrid deep learning system for human activity recognition (HAR), aiming to enhance the recognition accuracy and reduce the computational time. The proposed system combines a pre-trained image classification model with a sequence analysis model. First, the dataset was divided into a training set (70%), validation set… More > Graphic Abstract

    Video-Based Human Activity Recognition Using Hybrid Deep Learning Model

  • Open Access

    ARTICLE

    Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network

    Yuxiang Zou1, Ning He2,*, Jiwu Sun1, Xunrui Huang1, Wenhua Wang1

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1255-1276, 2025, DOI:10.32604/cmc.2024.055732 - 03 January 2025

    Abstract In recent years, gait-based emotion recognition has been widely applied in the field of computer vision. However, existing gait emotion recognition methods typically rely on complete human skeleton data, and their accuracy significantly declines when the data is occluded. To enhance the accuracy of gait emotion recognition under occlusion, this paper proposes a Multi-scale Suppression Graph Convolutional Network (MS-GCN). The MS-GCN consists of three main components: Joint Interpolation Module (JI Moudle), Multi-scale Temporal Convolution Network (MS-TCN), and Suppression Graph Convolutional Network (SGCN). The JI Module completes the spatially occluded skeletal joints using the (K-Nearest Neighbors)… More >

  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    ARTICLE

    A Combined Method of Temporal Convolutional Mechanism and Wavelet Decomposition for State Estimation of Photovoltaic Power Plants

    Shaoxiong Wu1, Ruoxin Li1, Xiaofeng Tao1, Hailong Wu1,*, Ping Miao1, Yang Lu1, Yanyan Lu1, Qi Liu2, Li Pan2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3063-3077, 2024, DOI:10.32604/cmc.2024.055381 - 18 November 2024

    Abstract Time series prediction has always been an important problem in the field of machine learning. Among them, power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies. Traditional power load forecasting often has poor feature extraction performance for long time series. In this paper, a new deep learning framework Residual Stacked Temporal Long Short-Term Memory (RST-LSTM) is proposed, which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences. The network framework of RST-LSTM consists of two More >

  • Open Access

    ARTICLE

    Re-Distributing Facial Features for Engagement Prediction with ModernTCN

    Xi Li1,2, Weiwei Zhu2, Qian Li3,*, Changhui Hou1,*, Yaozong Zhang1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 369-391, 2024, DOI:10.32604/cmc.2024.054982 - 15 October 2024

    Abstract Automatically detecting learners’ engagement levels helps to develop more effective online teaching and assessment programs, allowing teachers to provide timely feedback and make personalized adjustments based on students’ needs to enhance teaching effectiveness. Traditional approaches mainly rely on single-frame multimodal facial spatial information, neglecting temporal emotional and behavioural features, with accuracy affected by significant pose variations. Additionally, convolutional padding can erode feature maps, affecting feature extraction’s representational capacity. To address these issues, we propose a hybrid neural network architecture, the redistributing facial features and temporal convolutional network (RefEIP). This network consists of three key components:… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656 - 15 May 2024

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data… More >

Displaying 1-10 on page 1 of 17. Per Page