Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces

    Baris Burak Kanbur, Sheng Quan Heng, Fei Duan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1711-1718, 2022, DOI: 10.32604/fdmp.2022.021792

    Abstract The present study considers the impingement of a train of ethanol droplets on heated aluminum and glass surfaces. The surface temperature is allowed to vary in the interval 140°C–240°C. Impingement is considered with an inclination of 63 degrees. The droplet diameter is 0.2 mm in both aluminum and glass surface experiments. Thermal gradients are observed with a thermographic camera. It is found that in comparison to glass, the aluminum surface displays very small liquid accumulations and better evaporation performance due to its higher thermal conductivity. The relatively low thermal conductivity of glass results in higher thermal gradients on the surface.… More > Graphic Abstract

    Thermographic Observation of High-Frequency Ethanol Droplet Train Impingement on Heated Aluminum and Glass Surfaces

  • Open Access

    ARTICLE

    Optimization of the Cooling System of Electric Vehicle Batteries

    A. Heri Iswanto1,*, Iwan Harsono2, Alim Al Ayub Ahmed3, Sergushina Elena Sergeevna4, Stepan Krasnikov5, Rustem Zalilov6, John William Grimaldo Guerrero7, Liliya N. Latipova8, Safa Kareem Hachim9

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.3, pp. 835-850, 2022, DOI:10.32604/fdmp.2022.019851

    Abstract The most important components of electrical vehicles are the battery and the related cooling system. These subsystems play a major role in determining the overall electric vehicle performances. In this study, a novel cooling system with fluid in the battery cell is proposed, by which the energy storage system can be optimized through control of the temperature of the batteries. A sensitivity analysis is conducted considering the maximum temperature, the heat rate, the coolant temperature, and the geometry of the cavities. The numerical simulations show that the parameters for the trapezoidal compartment have an impact on the thermal performance of… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure Walls at Various Inclination Angles

    C.S. Nor Azwadi1, N.I.N. Izual2

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.6, pp. 559-574, 2012, DOI:10.3970/cmes.2012.084.559

    Abstract Natural convection in a differentially heated enclosure plays vital role in engineering applications such as nuclear reactor, electronic cooling technologies, roof ventilation, etc. The developed thermal flow patterns induced by the density difference are expected to be critically dependence on the inclination angles of the cavity. Hence, thermal and fluid flow pattern inside a differentially heated side enclosure walls with various inclination angles have been investigated numerically using the mesoscale lattice Boltzmann scheme. Three different dimensionless Rayleigh numbers were used, and a dimensionless Prandtl number of 0.71 was set to simulate the circulation of air in the system. It was… More >

  • Open Access

    ARTICLE

    Determination of Non-Equilibrium Surface Tension Gradients in Marangoni Thermal Flows: Application to Aqueous Solutions of Fatty Alcohols

    G.Pétré1, K.Tshinyama, A. Azouni2, S. Van Vaerenbergh1

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.1, pp. 1-10, 2008, DOI:10.3970/fdmp.2008.004.001

    Abstract This study illustrates a relevant and practical method to determine the effective surface tension gradient in a layer subjected to a lateral temperature difference. In general, this can be hardly performed in situ without perturbing the flow. For this reason we rely on an indirect determination approach. A simple model is developed that relates the surface tension gradient to other quantities that can be measured without introducing significant disturbances in the system. Measurements of these quantities are performed in a set-up where the flow corresponds with a good approximation to a one-dimensional model. A previously used set-up has been upgraded… More >

Displaying 1-10 on page 1 of 4. Per Page