Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (55)
  • Open Access

    ARTICLE

    Spray Effect on the Thermal Performances of a Dry Cooling Tower

    Zhe Geng1, Feng Feng1, Shuzhen Zhang1, Jie Li2, Chengwei Liu3, Yang Li4, Tiantian Liu4, Suoying He4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2289-2304, 2023, DOI:10.32604/fdmp.2023.026707

    Abstract Pre-cooling the inlet air of a dry cooling tower by means of a spray can improve the tower performance during periods of high temperature. To study the spray effect on the thermal performance of natural draft dry cooling towers (NDDCTs), in this study 3-D numerical simulations of such a process have been conducted using Fluent 16.2 (a two-way coupled Eulerian-Lagrangian approach). The considered NDDCT is 120 m high and only half system is simulated due to its structural symmetry. Three different spray strategies have been investigated at a typical crosswind speed of 4 m/s, which is the most frequent wind speed. The… More > Graphic Abstract

    Spray Effect on the Thermal Performances of a Dry Cooling Tower

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ASSESSMENT IN A CIRCULAR TUBE FITTED WITH VARIOUS SIZES OF MODIFIED V-BAFFLES: A NUMERICAL INVESTIGATION

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-16, 2021, DOI:10.5098/hmt.16.17

    Abstract This research reports numerical examinations on fluid flow, heat transfer behavior and thermal performance analysis in a circular tube equipped with modified V-baffles (CTMVB). The modified V-baffle (MVB) is a combination vortex generator between V-baffles/V-orifices which are placed on the tube wall and V-baffles which are inserted at the core of the tested tube. The MVB height is separated into two parts; b1 represents the MVB height on the tube wall, while b2 represents the MVB height at the core of the tested round tube. The MVB height to tube diameter ratios, b/D, are adjusted; b1/D = 0.05, 0.1, 0.15… More >

  • Open Access

    ARTICLE

    EFFECT OF FIN SHAPE ON THERMAL PERFORMANCE ENHANCEMENT OF PCM-BASED LOW-GRADE HEAT HARNESSING EXCHANGER

    Layth M. Jaleela , Hayder M. Jaffalb,*

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.37

    Abstract The phase change material (PCM)-based low-grade heat harnessing exchanger is used to study the recovering wasted energy from grey water. This experimental study investigated the effect of fin shape on improving the thermal performance of a PCM-based low-grade heat harnessing exchanger. Three heat exchangers of equal dimensions, namely, finless, inclined finned and V-shaped finned heat exchangers, were manufactured and tested in a container containing the PCM. A finless heat exchanger was adopted as a base case to demonstrate the improvement of heat transfer by using fins. The finless heat exchanger consists of two serpentine tubes where the cold water and… More >

  • Open Access

    ARTICLE

    CHARACTERISTICS AND THERMAL PERFORMANCE OF NANOFLUID FILM OVER HORIZONTAL MULTI-FACETED CYLINDER

    Fithry Mohd Amir*, Mohd Zamri Yusoff, Saiful Hasmady Abu Hassan

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-15, 2022, DOI:10.5098/hmt.18.27

    Abstract Nanofluid film on a horizontal tube is investigated numerically on the circular and multi-faceted cylinder. The fluid flow characteristics, including film thickness, shear stress, and thermal performance, are observed and analyzed. Fluid film on the circular surface is typical in many engineering applications, but the study of nanofluid film on non-circular surface is deficient in literature. The study provides a numerical model of a multi-faceted cylinder to simulate the nanofluid film on the non-circular surfaces using a volume of fluid (VOF) method. The ratio of Brownian motion to thermophoretic diffusion, NBT developed along the film thickness in phases, in which… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE OF LOW-COST COOLING SYSTEMS FOR TRANSMIT/RECEIVE MODULES OF PHASED ARRAY ANTENNAS WITH AND WITHOUT GRAVITY HEAT PIPES

    Yu.E. Nikolaenkoa , D.V. Pekurb,*, V.Yu. Кravetsa, V.M. Sorokinb, D.V. Kozaka , R.S. Melnyka, L.V. Lipnitskyia, A.S. Solomakhaa

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-13, 2022, DOI:10.5098/hmt.18.23

    Abstract This study compares thermal characteristics of two design versions of a new low-cost air-cooling system with a standard heat sink profile and built-in flat heat pipes of a simple design with a similar cooling system design without the heat pipes. The aim of the work is to determining the thermal characteristics and choosing the most effective option in a practical context. Using computer simulation in the Solidworks Flow Simulation standard software package allowed determining how the temperature of 8 transistors with a total power of 224 W was affected by changes in air velocity from 1 to 30 m/s, effective… More >

  • Open Access

    ARTICLE

    THERMAL PERFORMANCE ENHANCEMENT OF HEAT PIPE HEAT EXCHANGER IN THE AIR-CONDITIONING SYSTEM BY USING NANOFLUID

    Ayad S. Abdallaha,b,*, Nabil Jamil Yasina, Hani Aziz Ameena

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-7, 2022, DOI:10.5098/hmt.18.10

    Abstract To reduce the energy consumption in air-conditioning systems without changing the required temperature level in the air-conditioned space, Heat Pipe Heat Exchanger (HPHE) has been experimentally used and tested. The heat pipe has been filled with working fluid by about 50% of the volume of the evaporator which represents the filling ratio. In this research, three mass concentration of nanoparticle from copper oxide (CuO), 1wt%, 3wt% and 5wt% have been used and studied. Additionally, its effect on the HPHE effectiveness and the heat recovery ratio at different inlet air temperatures, 30, 35, 40, 45, 50, and 55 °C, have been… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY THE PERFORMANCE OF HYBRID SERPENTINE SOLAR COLLECTOR IN AIR CONDITIONING SYSTEM

    Hawraa T. Gateaa , Atheer S. Hassona, Adil A. Alwanb, Mohammed Y. Jabbarb, Azher M. Abeda

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.5

    Abstract The present work is an experimental study into the thermal performance of air conditioning system (split unit), bases on using renewable energy as an assisted facter. The serpentine tube flat plate solar collector (STFPSC) is combined with 1-ton capacity split air conditioning system, which is installed after the compressor to superheat the refrigerant that leaves the compressor. The conventional air conditioning (A/C) system is compared with the suggested system. The results show that the coefficient of performance (COP) of the solar assisted air conditioning system (SAAC), is affected by the enhancement of the solar collector, which enrolls the effect of… More >

  • Open Access

    ARTICLE

    IMPACT OF THREE DIFFERENT DOUBLE BAFFLE DESIGNS ON THE THERMAL PERFORMANCE OF SQUARE DUCTS

    Amnart Boonloia, Withada Jedsadaratanachaib,*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-13, 2022, DOI:10.5098/hmt.19.26

    Abstract CFD analyses of flow characteristics and heat transfer topology in a heat exchanger duct (HXD) placed with three various configurations of the double V-baffles (DVB) are reported. Parameters of interest are DVB height ratios (b/H = 0.05 – 0.25), gap spacing ratios (g = 0.05 – 0.40), flow directions (+x, -x), and DVB configurations (Type I, II and III). Laminar flow with Reynolds numbers (based on the inlet conditions) between 100 – 2000 is measured. The present problem is solved with the finite volume method (a commercial program). Fluid flow and heat transfer characteristics in the tested duct are described.… More >

  • Open Access

    ARTICLE

    THE EFFECTS OF NUSSELT, REYNOLDS NUMBER, AND PRESSURE DROP ON THE THERMAL PERFORMANCE OF PIERCED PIN FINS

    Wadhah Hussein Al doori*

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-9, 2022, DOI:10.5098/hmt.19.8

    Abstract Perforated fin forced convection heat transfer is the primary focus of this investigation. The purpose of this research is to see if perforated pin fins can help with heat transmission in the devices. Each pin's perforation diameter and number of holes are rigorously examined. The Nusselt numbers for perforated pins are 47 percent higher than those for solid pins, according to the study, and this number raises as the number of holes increases. The pressure drop is reduced by 19% when perforated pins are used instead of solid pins. Heat transmission in a round-holed pin fin was studied using forced… More >

  • Open Access

    ARTICLE

    ANALYTICAL STUDY OF THERMAL PERFORMANCE OF A JET PLATE SOLAR AIR HEATER WITH THE LONGITUDINAL FINS UNDER THE CROSS FLOW AND NON-CROSS FLOW CONDITIONS

    Rajen Kumar Nayaka,* , Ravi Shankar Prasada,† , Ujjwal Kumar Nayaka, Amit Kumar Guptab

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-12, 2022, DOI:10.5098/hmt.19.7

    Abstract This analytical study has been carried out on inline and staggered hole jet plate solar air heater with longitudinal fins attached underside the absorber surface under the cross flow and non-cross flow conditions of air through the channels for varying mass flow rate of air, ṁ1 (50-300 kg/hm2 ), jet hole diameter, D (6 mm-10 mm) and distance between the absorber and jet plate, Z2 (5 cm-10 cm) with fixed number of jet holes, N (480 and 1008 for inline and staggered hole respectively) and pitch of the fins, p (3 mm). The result shows the performance of staggered hole… More >

Displaying 21-30 on page 3 of 55. Per Page