Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (96)
  • Open Access

    ARTICLE

    The Plateau Dilemma: Identifying Key Factors of Depression Risk among Middle-Aged and Older Chinese with Chronic Diseases

    Zhe He1, Yaning Zhang2,*

    International Journal of Mental Health Promotion, Vol.27, No.11, pp. 1747-1768, 2025, DOI:10.32604/ijmhp.2025.070491 - 28 November 2025

    Abstract Background: Depression represents a significant global mental health burden, particularly among middle-aged and older Chinese with chronic diseases in high-altitude regions, where harsh environmental conditions and limited social support exacerbate mental health disparities. This paper aims to develop an interpretable machine learning prediction framework to identify the key factors of depression in this vulnerable population, thereby proposing targeted intervention measures. Methods: Utilizing data from the China Health and Retirement Longitudinal Study in 2020, this paper screened out and analyzed 2431 samples. Subsequently, Recursive Feature Elimination and Least Absolute Shrinkage and Selection Operator were applied to screen… More >

  • Open Access

    ARTICLE

    Level Set Topology Optimization with Autonomous Hole Formation Using Material Removal Scheme of SIMP

    Fei Wu1, Ziyang Zeng1,2, Kunliang Xie1, Yuqiang Liu1, Jiang Ding1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1689-1710, 2025, DOI:10.32604/cmes.2025.071256 - 26 November 2025

    Abstract The level set method (LSM) is renowned for producing smooth boundaries and clear geometric representations, facilitating integration with CAD environments. However, its inability to autonomously generate new holes during optimization makes the results highly dependent on the initial design. Although topological derivatives are often introduced to enable hole nucleation, their conversion into effective shape derivatives remains challenging, limiting topological evolution. To address this, a level set topology optimization method with autonomous hole formation (LSM-AHF) is proposed, integrating the material removal mechanism of the SIMP (Solid Isotropic Material with Penalization) method into the LSM framework. First,… More >

  • Open Access

    ARTICLE

    A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring

    Guangfei Jia*, Jinqiu Yang, Hanwen Liang

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1057-1072, 2025, DOI:10.32604/sdhm.2025.061805 - 30 June 2025

    Abstract Considering the noise problem of the acquisition signals from mechanical transmission systems, a novel denoising method is proposed that combines Variational Mode Decomposition (VMD) with wavelet thresholding. The key innovation of this method lies in the optimization of VMD parameters K and using the improved Horned Lizard Optimization Algorithm (IHLOA). An inertia weight parameter is introduced into the random walk strategy of HLOA, and the related formula is improved. The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions (IMFs), and the high-noise IMFs are identified based on a correlation coefficient-variance method. Further noise… More > Graphic Abstract

    A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring

  • Open Access

    ARTICLE

    TRLLD: Load Level Detection Algorithm Based on Threshold Recognition for Load Time Series

    Qingqing Song1,*, Shaoliang Xia1, Zhen Wu2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2619-2642, 2025, DOI:10.32604/cmc.2025.062526 - 16 April 2025

    Abstract Load time series analysis is critical for resource management and optimization decisions, especially automated analysis techniques. Existing research has insufficiently interpreted the overall characteristics of samples, leading to significant differences in load level detection conclusions for samples with different characteristics (trend, seasonality, cyclicality). Achieving automated, feature-adaptive, and quantifiable analysis methods remains a challenge. This paper proposes a Threshold Recognition-based Load Level Detection Algorithm (TRLLD), which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics. By utilizing distribution density uniformity, the algorithm classifies data points and ultimately… More >

  • Open Access

    ARTICLE

    Characterizing and Stage-Wise Differentiation of Coal Spontaneous Combustion in Deep Mines

    Haitao Wang1,2,*, Pengxin Zhang2, Weihao Li2, Baogang Li1, Xianghui Xiong1

    Energy Engineering, Vol.122, No.4, pp. 1561-1580, 2025, DOI:10.32604/ee.2025.062844 - 31 March 2025

    Abstract Deep mining, characterized by high stress, elevated geothermal gradients, and significant moisture content, significantly increases the risk of Coal Spontaneous Combustion (CSC), posing a major threat to mine safety. This study delves into the impact of these factors on the self-ignition properties of coal, leveraging data from four distinct mines in Heilongjiang Province, China: Shuangyashan Dongrong No. 2 Mine, Hegang Junde Coal Mine, Qitaihe Longhu Coal Mine, and Jixi Ronghua No. 1 Mine. We have honed the theoretical framework to account for variations in gas content during CSC. Our investigation, conducted through programmed temperature rise More >

  • Open Access

    ARTICLE

    Cloud-Based Deep Learning for Real-Time URL Anomaly Detection: LSTM/GRU and CNN/LSTM Models

    Ayman Noor*

    Computer Systems Science and Engineering, Vol.49, pp. 259-286, 2025, DOI:10.32604/csse.2025.060387 - 21 February 2025

    Abstract Precisely forecasting the performance of Deep Learning (DL) models, particularly in critical areas such as Uniform Resource Locator (URL)-based threat detection, aids in improving systems developed for difficult tasks. In cybersecurity, recognizing harmful URLs is vital to lowering risks associated with phishing, malware, and other online-based attacks. Since it directly affects the model’s capacity to differentiate between benign and harmful URLs, finding the optimum mix of hyperparameters in DL models is a significant difficulty. Two commonly used architectures for sequential and spatial data processing, Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU) and Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    A Trusted Distributed Oracle Scheme Based on Share Recovery Threshold Signature

    Shihao Wang1, Xuehui Du1,*, Xiangyu Wu1, Qiantao Yang1,2, Wenjuan Wang1, Yu Cao1, Aodi Liu1

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3355-3379, 2025, DOI:10.32604/cmc.2024.059722 - 17 February 2025

    Abstract With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put… More >

  • Open Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024

    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open Access

    ARTICLE

    Path Planning of Multi-Axis Robotic Arm Based on Improved RRT*

    Juanling Liang1, Wenguang Luo1,2,*, Yongxin Qin1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1009-1027, 2024, DOI:10.32604/cmc.2024.055883 - 15 October 2024

    Abstract An improved RRT* algorithm, referred to as the AGP-RRT* algorithm, is proposed to address the problems of poor directionality, long generated paths, and slow convergence speed in multi-axis robotic arm path planning. First, an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency. Second, a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to… More >

  • Open Access

    PROCEEDINGS

    Solving Advection-Diffusion Equation by Proper Generalized Decomposition with Coordinate Transformation

    Xinyi Guan1, Shaoqiang Tang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010869

    Abstract Inheriting a convergence difficulty explained by the Kolmogorov N-width [1], the advection-diffusion equation is not effectively solved by the Proper Generalized Decomposition [2] (PGD) method. In this paper, we propose a new strategy: Proper Generalized Decomposition with Coordinate Transformation (CT-PGD). Converting the mixed hyperbolic-parabolic equation to a parabolic one, it resumes the efficiency of convergence for advection-dominant problems. Combining PGD with CT-PGD, we solve advection-diffusion equation by much fewer degrees of freedom, hence improve the efficiency. The advection-dominant regime and diffusion-dominant regime are quantitatively classified by a threshold, computed numerically. Moreover, we find that appropriate More >

Displaying 1-10 on page 1 of 96. Per Page