Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Topic Mining and Evolution Analysis of Domestic Smart Library Research Based on the BERTopic Model

    Meile Li1, Yinuo Jiang2,*

    Journal on Artificial Intelligence, Vol.7, pp. 509-516, 2025, DOI:10.32604/jai.2025.073792 - 28 November 2025

    Abstract This paper conducts topic mining and analysis of research literature in the domestic smart library field based on the BERTopic model, aiming to reveal its topic development context and evolution trends. Journal literature in the smart library field collected by CNKI (China National Knowledge Infrastructure) from 2015 to 2024 was analyzed using the BERTopic model and dynamic topic modeling for topic mining and evolution trend analysis. The study found that the domestic smart library field involves multiple core topics, identifying a diversified topic structure centered around “data”, “user”, “5g”, etc. The research results provide data More >

  • Open Access

    ARTICLE

    GLMTopic: A Hybrid Chinese Topic Model Leveraging Large Language Models

    Weisi Chen1,*, Walayat Hussain2,*, Junjie Chen1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1559-1583, 2025, DOI:10.32604/cmc.2025.065916 - 29 August 2025

    Abstract Topic modeling is a fundamental technique of content analysis in natural language processing, widely applied in domains such as social sciences and finance. In the era of digital communication, social scientists increasingly rely on large-scale social media data to explore public discourse, collective behavior, and emerging social concerns. However, traditional models like Latent Dirichlet Allocation (LDA) and neural topic models like BERTopic struggle to capture deep semantic structures in short-text datasets, especially in complex non-English languages like Chinese. This paper presents Generative Language Model Topic (GLMTopic) a novel hybrid topic modeling framework leveraging the capabilities… More >

  • Open Access

    ARTICLE

    Enhancing Exam Preparation through Topic Modelling and Key Topic Identification

    Rudraneel Dutta*, Shreya Mohanty

    Journal on Artificial Intelligence, Vol.6, pp. 177-192, 2024, DOI:10.32604/jai.2024.050706 - 19 July 2024

    Abstract Traditionally, exam preparation involves manually analyzing past question papers to identify and prioritize key topics. This research proposes a data-driven solution to automate this process using techniques like Document Layout Segmentation, Optical Character Recognition (OCR), and Latent Dirichlet Allocation (LDA) for topic modelling. This study aims to develop a system that utilizes machine learning and topic modelling to identify and rank key topics from historical exam papers, aiding students in efficient exam preparation. The research addresses the difficulty in exam preparation due to the manual and labour-intensive process of analyzing past exam papers to identify… More >

  • Open Access

    ARTICLE

    Analyzing COVID-19 Discourse on Twitter: Text Clustering and Classification Models for Public Health Surveillance

    Pakorn Santakij1, Samai Srisuay2,*, Pongporn Punpeng1

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 665-689, 2024, DOI:10.32604/csse.2024.045066 - 20 May 2024

    Abstract Social media has revolutionized the dissemination of real-life information, serving as a robust platform for sharing life events. Twitter, characterized by its brevity and continuous flow of posts, has emerged as a crucial source for public health surveillance, offering valuable insights into public reactions during the COVID-19 pandemic. This study aims to leverage a range of machine learning techniques to extract pivotal themes and facilitate text classification on a dataset of COVID-19 outbreak-related tweets. Diverse topic modeling approaches have been employed to extract pertinent themes and subsequently form a dataset for training text classification models.… More >

  • Open Access

    ARTICLE

    News Modeling and Retrieving Information: Data-Driven Approach

    Elias Hossain1, Abdullah Alshahrani2, Wahidur Rahman3,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 109-123, 2023, DOI:10.32604/iasc.2022.029511 - 05 February 2024

    Abstract This paper aims to develop Machine Learning algorithms to classify electronic articles related to this phenomenon by retrieving information and topic modelling. The Methodology of this study is categorized into three phases: the Text Classification Approach (TCA), the Proposed Algorithms Interpretation (PAI), and finally, Information Retrieval Approach (IRA). The TCA reflects the text preprocessing pipeline called a clean corpus. The Global Vectors for Word Representation (Glove) pre-trained model, FastText, Term Frequency-Inverse Document Frequency (TF-IDF), and Bag-of-Words (BOW) for extracting the features have been interpreted in this research. The PAI manifests the Bidirectional Long Short-Term Memory (Bi-LSTM)… More >

  • Open Access

    ARTICLE

    Topic Modelling and Sentiment Analysis on YouTube Sustainable Fashion Comments

    Hsu-Hua Lee, Minh T. N. Nguyen*

    Journal of New Media, Vol.5, No.1, pp. 65-80, 2023, DOI:10.32604/jnm.2023.045792 - 27 December 2023

    Abstract YouTube videos on sustainable fashion enable the public to gain basic knowledge about this concept. In this paper, we analyse user comments on YouTube videos that contain sustainable fashion content. The paper’s main objective is to help content creators and business managers effectively understand the perspectives of viewers, thus improving video quality and developing business. We analysed a dataset of 17,357 comments collected from 15 sustainable fashion YouTube videos. First, we use Latent Dirichlet Allocation (LDA), a topic modelling technique, to discover the abstract topics. In addition, we use two approaches to rank these topics: More >

  • Open Access

    ARTICLE

    ESG Discourse Analysis Through BERTopic: Comparing News Articles and Academic Papers

    Haein Lee1, Seon Hong Lee1, Kyeo Re Lee2, Jang Hyun Kim3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6023-6037, 2023, DOI:10.32604/cmc.2023.039104 - 29 April 2023

    Abstract Environmental, social, and governance (ESG) factors are critical in achieving sustainability in business management and are used as values aiming to enhance corporate value. Recently, non-financial indicators have been considered as important for the actual valuation of corporations, thus analyzing natural language data related to ESG is essential. Several previous studies limited their focus to specific countries or have not used big data. Past methodologies are insufficient for obtaining potential insights into the best practices to leverage ESG. To address this problem, in this study, the authors used data from two platforms: LexisNexis, a platform… More >

  • Open Access

    ARTICLE

    Ensemble Deep Learning Framework for Situational Aspects-Based Annotation and Classification of International Student’s Tweets during COVID-19

    Shabir Hussain1, Muhammad Ayoub2, Yang Yu1, Junaid Abdul Wahid1, Akmal Khan3, Dietmar P. F. Moller4, Hou Weiyan1,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5355-5377, 2023, DOI:10.32604/cmc.2023.036779 - 29 April 2023

    Abstract As the COVID-19 pandemic swept the globe, social media platforms became an essential source of information and communication for many. International students, particularly, turned to Twitter to express their struggles and hardships during this difficult time. To better understand the sentiments and experiences of these international students, we developed the Situational Aspect-Based Annotation and Classification (SABAC) text mining framework. This framework uses a three-layer approach, combining baseline Deep Learning (DL) models with Machine Learning (ML) models as meta-classifiers to accurately predict the sentiments and aspects expressed in tweets from our collected Student-COVID-19 dataset. Using the… More >

  • Open Access

    ARTICLE

    Topic Models to Analyze Disaster-Related Newspaper Articles: Focusing on COVID-19

    Yun-Jung Choi1, Youn-Joo Um2,*

    International Journal of Mental Health Promotion, Vol.25, No.3, pp. 421-431, 2023, DOI:10.32604/ijmhp.2023.023255 - 21 February 2023

    Abstract Major media outlets have run many articles on the COVID-19 pandemic. Since the public suffers cognitive and emotional effects related to COVID-19 from such reports, we analyzed and reviewed the topics of news reports. We searched newspaper articles with the term ‘COVID-19’ term in four Korean daily newspapers from January 20, 2020, when the first patient in Korea was found, to June 15, 2020. Topic modeling analysis was conducted through text mining using R. Five themes were found: “Changes in people’s everyday life,” “Socio-economic shock,” “Trends in infection,” “Role of the government and business,” and More >

  • Open Access

    ARTICLE

    Topic Modelling and Sentimental Analysis of Students’ Reviews

    Omer S. Alkhnbashi1, Rasheed Mohammad Nassr2,*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6835-6848, 2023, DOI:10.32604/cmc.2023.034987 - 28 December 2022

    Abstract Globally, educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic. The fundamental concern has been the continuance of education. As a result, several novel solutions have been developed to address technical and pedagogical issues. However, these were not the only difficulties that students faced. The implemented solutions involved the operation of the educational process with less regard for students’ changing circumstances, which obliged them to study from home. Students should be asked to provide a full list of their concerns. As a result, student reflections, including… More >

Displaying 1-10 on page 1 of 19. Per Page