Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Overexpression of RUNX1 mitigates dexamethasone-induced impairment of osteogenic differentiation and oxidative stress injury in bone marrow mesenchymal stem cells by promoting alpha-2 macroglobulin transcription

    QINGJIAN HE1, HUIXIN ZHU2,3, SHANHONG FANG4,5,*

    BIOCELL, Vol.48, No.2, pp. 205-216, 2024, DOI:10.32604/biocell.2023.045109

    Abstract Introduction: Dexamethasone (Dex) caused impaired osteoblast differentiation and oxidative stress (OS) in bone marrow mesenchymal stem cells (BMSCs). This work sought to elucidate the precise molecular pathway through which Dex influences osteogenic differentiation (OD) and OS in BMSCs. Methods: The expression of Runt-related transcription factor 1 (RUNX1) and alpha-2 macroglobulin (A2M) was assessed in Dex-treated BMSCs using qRT-PCR and Western Blot. Following the functional rescue experiments, cell proliferation was determined by MTT assay, reactive oxygen species (ROS) expression by DCFH-DA fluorescent probe, lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) expression by kits, OD by alkaline… More >

  • Open Access

    REVIEW

    The IDD Transcription Factors: Their Functions in Plant Development and Environmental Response

    Jing Liu1,*, Defeng Shu1, Zilong Tan1, Mei Ma1, Huanhuan Yang1, Ning Guo1,2, Shipeng Li1, Dayong Cui1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 63-79, 2024, DOI:10.32604/phyton.2023.045940

    Abstract INDETERMINATE-DOMAIN proteins (IDDs) are a plant-specific transcription factor family characterized by a conserved ID domain with four zinc finger motifs. Previous studies have demonstrated that IDDs coordinate a diversity of physiological processes and functions in plant growth and development, including floral transition, plant architecture, seed and root development, and hormone signaling. In this review, we especially summarized the latest knowledge on the functions and working models of IDD members in Arabidopsis, rice, and maize, particularly focusing on their role in the regulatory network of biotic and abiotic environmental responses, such as gravity, temperature, water, and pathogens. Understanding these mechanisms underlying… More >

  • Open Access

    ARTICLE

    Characteristics and expression of the TCP transcription factors family in Allium senescens reveal its potential roles in drought stress responses

    XIAOHONG FU1,#, JIE ZHAO3,#, DANDAN CAO1,2, CHENGXING HE1,2, ZIYI WANG1, YIBEI JIANG1, JIANFENG LIU1,*, GUIXIA LIU1,*

    BIOCELL, Vol.47, No.4, pp. 905-917, 2023, DOI:10.32604/biocell.2023.026930

    Abstract Allium senescens, is an important economic and ecological grassland plant with drought-resistant characteristics. A TCP protein transcription factor is important in the regulation of plant development and adverse responses. However, the mechanism by which TCP transcription functions in drought resistance in Allium senescens is still not clear. Here, we obtained a total of 190,305 transcripts with 115,562 single gene clusters based on RNA-Seq sequencing of Allium senescens under drought stress. The total number of bases was 97,195,096 bp, and the average length was 841.06 bp. Furthermore, we found that there were eight genes of the TCP family that showed an… More >

  • Open Access

    ARTICLE

    GhSCL4 Acts as a Positive Regulator in Both Transgenic Arabidopsis and Cotton during Salt Stress

    Yanyan Zhao1,*, Yanpeng Ding2, Bailin Duan1, Qingzhou Xie1

    Phyton-International Journal of Experimental Botany, Vol.92, No.1, pp. 1-15, 2023, DOI:10.32604/phyton.2022.022384

    Abstract GRAS transcription factors play important roles in plant abiotic stress response, but their characteristics and functions in cotton have not been fully investigated. A cotton SCL4/7 subgroup gene in the GRAS family, GhSCL4, was found to be induced by NaCl treatments. Nuclear localization and transactivation activity of GhSCL4 indicate its potential role in transcriptional regulation. Transgenic Arabidopsis thaliana over-expressing GhSCL4 showed enhanced resistance to salt and osmotic stress. What’s more, the transcript levels of salt stress-induced genes (AtNHX1 and AtSOS1) and oxidation-related genes (AtAPX3 and AtCSD2) were more highly induced in the GhSCL4 over-expression lines than in wild type after… More >

  • Open Access

    ARTICLE

    The Effect of Methylation Modification of MDD on the Expression of Key Genes in the Process of Saponin Synthesis in Eleutherococcus senticosus

    Minghui Cui, Limei Lin, Jie Zhang, Xin Song, Shuo Wang, Jing Dong, Xuelei Zhao, Yuehong Long*, Zhaobin Xing*

    Phyton-International Journal of Experimental Botany, Vol.91, No.12, pp. 2649-2668, 2022, DOI:10.32604/phyton.2022.021631

    Abstract Mevalonate pyrophosphate decarboxylase is a kind of key enzyme in the terpenoid synthesis pathway in Eleutherococcus senticosus. The results of bisulfite sequencing showed that there were three kinds of samples with a low (0.68%), medium (0.72%) and high (0.79%) DNA methylation ratio in the promoter of MDD in E. senticosus, respectively. The transcriptome sequencing results showed that the expression of MDD in E. senticosus was significantly up-regulated in the types with low DNA methylation ratios of MDD (P < 0.05). There was a significant negative correlation between the saponin content in E. senticosus and the DNA methylation ratio of MDDMore >

  • Open Access

    ARTICLE

    Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza

    XIN LI1, JIANMIN PAN1, FAISAL ISLAM2, JUANJUAN LI1, ZHUONI HOU1, ZONGQI YANG1, LING XU1,*

    BIOCELL, Vol.46, No.8, pp. 1947-1958, 2022, DOI:10.32604/biocell.2022.019806

    Abstract NAC (NAM, ATAF, CUC) is a class of transcription factors involved in plant growth regulation, abiotic stress responses, morphogenesis and metabolism. Salvia miltiorrhiza is an important Chinese medicinal herb, but the characterization of NAC genes in this species is limited. In this study, based on the Salvia miltiorrhiza genomic databases, 82 NAC transcription factors were identified, which were divided into 14 groups. Meanwhile, phylogenetic analysis, gene structure, chromosomal localization and potential role of SmNACs in abiotic stress conditions were also studied. The results revealed that some SmNACs had different structures than others, which advised that these genes may have multiple/distinct… More >

  • Open Access

    ARTICLE

    The molecular characteristics of soybean ARR-B transcription factors

    HE LI1, RUNAN CHEN1, ZHONGCHENG CHEN1, JIAXIN LIN1, XIJUN JIN1, CHUNYUAN REN1, QIUSEN CHEN1, FENGQIONG CHEN1, GAOBO YU1,*, YUXIAN ZHANG1,2,*

    BIOCELL, Vol.46, No.6, pp. 1575-1592, 2022, DOI:10.32604/biocell.2022.018762

    Abstract The Type-B authentic response regulator (ARR-Bs) gene family is one of the important plant-specific transcription factor families involved in variety of physiological processes. However, study of ARR-Bs gene family in soybean is limited. Genome-wide analysis and expression profiling of the ARR-Bs gene family were performed in the soybean genome. 31 ARR-Bs genes (namely GmARR-B1-31) were identified, containing conserved catalytic domains with protein lengths and molecular weights ranging from 246 to 699 amino acids (aa) and 28.30 to 76.86 kDa, respectively. Phylogenetic analysis grouped ARR-Bs genes into three clusters—Cluster I, Cluster II, and Cluster III—which included 15, 12, and 4 genes,… More >

  • Open Access

    ARTICLE

    Retinoic acid affects basic cellular processes and SOX2 and SOX18 expression in breast carcinoma cells

    ISIDORA PETROVIC1, MILENA MILIVOJEVIC1, ANA ARSENIJEVIC2, ANDRIJANA LAZIC1, NATASA KOVACEVIC GRUJICIC1, MARIJA SCHWIRTLICH1, JELENA POPOVIC3, MILENA STEVANOVIC1,4,5,*

    BIOCELL, Vol.45, No.5, pp. 1355-1367, 2021, DOI:10.32604/biocell.2021.015817

    Abstract Genetic and molecular heterogeneity, together with intrinsic and acquired resistance to therapy, represent the major obstacles to the successful treatment of different types of breast carcinoma. Increasing evidence demonstrates that SOX transcription factors in breast carcinomas could act both as oncogenes and tumor suppressors and have been associated with tumor stage and grade, poor prognosis, and therapy resistance. Both SOX2 and SOX18 overexpression has been correlated with poor prognosis in breast carcinomas, and these genes are recognized as potential antitumor targets. Our aim was to evaluate the effect of retinoic acid (RA), a well-known cyto-differentiating agent, on breast carcinoma cells… More >

  • Open Access

    ARTICLE

    Transcriptome analysis of purple pigment formation in Colocasia esculenta

    FANGLIAN HE1, WEIQING DONG1,*, SHAOLONG WEI2,*, ZUYANG QIU3, JINGLI HUANG4, HUIPING JIANG1, SHIYU HUANG1, LILI LIU3

    BIOCELL, Vol.45, No.3, pp. 785-796, 2021, DOI:10.32604/biocell.2021.014418

    Abstract Taro (Colocasia esculenta (L.) Schott) is an important crop in Africa, Southeast Asia, and subtropics and is used as a food and medicine. The purple color pigmentation is an appealing character in taro. We sampled taro corms of the cultivar ‘Lipu Taro’ at four developmental stages, including LPYS1 (without purple pigment, 50 days of development (DOD)), LPYS2 (very few purple pigments, 75 DOD), LPYS3 (moderate purple pigments, 115 DOD) and LPYS4 (high purple pigments, 205 DOD). The purpose of our study was to identify the key genes underpinning the purple pigmentation in taro based on RNA-sequencing. Through RNA-Seq, 6453 differentially… More >

  • Open Access

    REVIEW

    Non-Canonical Functions of the E2F/DP Pathway with Emphasis in Plants

    Víctor A. Sánchez-Camargo1,2, Samantha Romero-Rodríguez1, Jorge M. Vázquez-Ramos1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.2, pp. 307-330, 2021, DOI:10.32604/phyton.2021.014967

    Abstract The E2F/DP pathway is a widely conserved regulatory mechanism in pluricellular organisms. The family of E2F and DP transcription factors was originally described having a role in the transition from the G1 to the S phase of the cell cycle. However, the discovery of hundreds of possible gene targets and their involvement in many other biochemical processes, soon showed that they participated in cell development and differentiation, chromatin remodeling, DNA repair and others. The E2F/DP transcription factors can act as either activators or repressors of transcription depending on their association to other regulatory proteins, particularly the retinoblastoma protein, or even… More >

Displaying 1-10 on page 1 of 12. Per Page