Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (763)
  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization of the FEM, these… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    ARTICLE

    Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, Xuejian Pei, He Lu, Shuzhen Zong

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 287-304, 2024, DOI:10.32604/fhmt.2023.045038

    Abstract As compact and efficient heat exchange equipment, helically coiled tube-in-tube heat exchangers (HCTT heat exchangers) are widely used in many industrial processes. However, the thermal-hydraulic research of liquefied natural gas (LNG) as the working fluid in HCTT heat exchangers is rarely reported. In this paper, the characteristics of HCTT heat exchangers, in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube, are studied by numerical simulations. The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity, the helical middle diameter, and… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF ENHANCED NUCLEATE BOILING HEAT TRANSFER ON UNIFORM AND MODULATED POROUS STRUCTURES

    Calvin Hong Lia, G. P. Petersonb,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3007

    Abstract An experimental investigation of the Critical Heat Flux (CHF) and heat transfer coefficient (HTC) of two-phase heat transfer of de-Ionized (DI) water, pool boiling was conducted using several kinds of sintered copper microparticle porous uniform and modulated structures. The modulated porous structure reached a heat flux of 450 W/cm2 and a heat transfer coefficient of 230,000 W/m2K. The thick and thin uniform porous structures achieved CHFs of 290 W/cm2 and 227 W/cm2 , respectively, and heat transfer coefficients of 118,000 W/m2K and 104,000 W/m2K. The mechanisms for the dramatically improved CHFs and HTCs were identified with assistance of a visualization… More >

  • Open Access

    ARTICLE

    MICROCANTILEVERS IN BIOMEDICAL AND THERMO/FLUID APPLICATIONS

    Khalil Khanafera, Kambiz Vafaib,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-9, 2010, DOI:10.5098/hmt.v1.2.3004

    Abstract A study was conducted to demonstrate the applications of microcantilevers in biomedical and thermo/fluid fields. The deflection of the microcantilevers due to biomaterial and turbulence effects was highlighted in this work. The novel patented microcantilever assemblies that were presented in this study can increase the signal and decrease the unfavorable deflection due to flow disturbances. This work paves the road for researchers in the area microcantilever based biosensors to design efficient microsensor systems that exhibit minimal errors in the measurements. Fluid-structure interaction was also utilized to investigate some aspects of the fluid flow and heat transfer characteristics. More >

  • Open Access

    ARTICLE

    PREDICTION OF BINARY MIXTURE BOILING HEAT TRANSFER IN SYSTEMS WITH STRONG MARANGONI EFFECTS

    Kenneth M. Armijo, Van P. Carey*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-6, 2010, DOI:10.5098/hmt.v1.2.3003

    Abstract This paper investigates the impact of Marangoni phenomena for low concentrations of 2-propanol/water and methanol/water mixtures. In real systems the addition of small levels of surface-active contaminants can affect the surface tension of the liquid-vapor interface and thermodynamic conditions in this region. Analysis was performed for three widely accepted binary mixture correlations to predict heat flux and superheat values for subatmospheric experimental data using bulk fluid and film thermodynamic properties. Due to the non-ideal nature of these alcohol/water mixtures, this study also employs an average pseudo single-component (PSC) coefficient in place of an ideal heat transfer coefficient (HTC) to improve… More >

  • Open Access

    ARTICLE

    ON MODELING OF HEAT AND MASS TRANSFER AND OTHER TRANSPORT PHENOMENA IN FUEL CELLS

    Bengt Sundén*, Jinliang Yuan

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-20, 2010, DOI:10.5098/hmt.v1.1.3008

    Abstract Depending on specific configuration and design, a variety of physical phenomena is present in fuel cells, e.g., multi-component gas flow, energy and mass transfer of chemical species in composite domains and sites. These physical phenomena are strongly affected by chemical/electrochemical reactions in nano-/micro-scale structured electrodes and electrolytes. Due to the electrochemical reactions, generation and consumption of chemical species together with electric current production take place at the active surfaces for all kinds of fuel cells. Furthermore, water management and twophase flow in proton exchange membrane fuel cells (PEMFCs) and internal reforming reactions of hydrocarbon fuels in solid oxide fuel cells… More >

  • Open Access

    ARTICLE

    NATURAL CONVECTIVE HEAT TRANSFER FROM A NARROW VERTICAL FLAT PLATE WITH A UNIFORM SURFACE HEAT FLUX AND WITH DIFFERENT PLATE EDGE CONDITIONS

    Patrick H. Oosthuizen*, Jane T. Paul

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-8, 2010, DOI:10.5098/hmt.v1.1.3006

    Abstract Natural convective heat transfer from narrow vertical plates which have a uniform surface heat flux has studied. With a narrow plate the heat transfer rate is dependent on the flow near the vertical edges of the plate. The magnitude of the edge effects will depend on the conditions existing near the edges of the plate. Three situations have here been considered these being a heated plate imbedded in a large plane adiabatic surface, the surfaces of the heated plane and the adiabatic surface being in the same plane, a heated plate with plane adiabatic surfaces above and below the heated… More >

  • Open Access

    ARTICLE

    TURBINE BLADE FILM COOLING USING PSP TECHNIQUE

    Je-Chin Han*, Akhilesh P. Rallabandi

    Frontiers in Heat and Mass Transfer, Vol.1, No.1, pp. 1-21, 2010, DOI:10.5098/hmt.v1.1.3001

    Abstract Film cooling is widely used to protect modern gas turbine blades and vanes from the ever increasing inlet temperatures. Film cooling involves a very complex turbulent flow-field, the characterization of which is necessary for reliable and economical design. Several experimental studies have focused on gas turbine blade, vane and end-wall film cooling over the past few decades. Measurements of heat transfer coefficients, film cooling effectiveness values and heat flux ratios using several different experimental methods have been reported. The emphasis of this current review is on the Pressure Sensitive Paint (PSP) mass transfer analogy to determine the film cooling effectiveness.… More >

  • Open Access

    ARTICLE

    REDUCING HEAT TRANSFER BETWEEN TWO CONCENTRIC SEMICYLINDERS USING RADIATION SHIELDS WITH TEMPERATUREDEPENDENT EMISSIVITY

    Seyfolah Saedodin, M.S. Motaghedi Barforoush, Mohsen Torabi*

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-4, 2011, DOI:10.5098/hmt.v2.4.4001

    Abstract In this paper, a simplifying approach for calculating the radiant energy is achieved using the concept of net radiation heat transfer and provides an easy way for solving a variety of situations. This method has been applied to calculate the net radiation heat transfer between two long concentric semi-cylinders. Then this method used to calculate reduction heat transfer when radiation shields with temperature-dependent emissivity applied between these objects. Moreover, using this method the percentage reduction in heat transfer between two surfaces was calculated. The findings reveal that, one radiation shield with lower emissivity can reduce the net heat transfer even… More >

  • Open Access

    ARTICLE

    SATURATED AND SUBCOOLED POOL BOILING OF HFE-7200 MIXTURES ON A COPPER NANOWIRE SURFACE

    Aravind Sathyanarayanaa, Pramod Warrierb, Yogendra Joshia,*, Amyn Tejab

    Frontiers in Heat and Mass Transfer, Vol.2, No.4, pp. 1-7, 2011, DOI:10.5098/hmt.v2.4.3007

    Abstract Electrical and chemical compatibility requirements of electronic components pose significant constraints on the choice of liquid coolants. Dielectric coolants such as Novec fluids and fluoroinerts are plagued by poor thermal properties. This necessitates the development of new heat transfer fluids. In this study we examine mixture formulations that provide an avenue for enhancing the properties of existing heat transfer fluids. Mixture formulations of Novec fluid (HFE 7200) with Methanol and Ethoxybutane are considered. Pool boiling experiments are performed on a copper nanowire surface. The results show an improvement of 24% and 11% in the CHF of HFE 7200 – Methanol… More >

Displaying 11-20 on page 2 of 763. Per Page