Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (975)
  • Open Access

    ARTICLE

    SOLUTE TRANSPORT AND HEAT TRANSFER IN SINGLE-PHASE FLOW IN POROUS MEDIUM WITH GENERATIVE/DESTRUCTIVE CHEMICAL REACTION AND VARIABLE VISCOSITY IMPACTS

    Driss Achemlala,† , Mohammed Sritib , Mohamed El Harouib , Elyazid Flilihib , Mounir Kriraaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.34

    Abstract In this paper we study the combined free convection, due to thermal and species diffusion, of a viscous incompressible non Newtonian fluid over a vertical plate embedded in a saturated porous medium with three thermal states of the surface and a constant concentration in the presence of a chemical reaction. The effect of temperature dependent viscosity is also investigated. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a unique similarity transformation and More >

  • Open Access

    REVIEW

    FOULING PHENOMENON AND ITS EFFECT ON HEAT EXCHANGER: A REVIEW

    Stephen K. Ogbonnaya, Oluseyi O. Ajayi*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.31

    Abstract Heat exchangers as a heat transfer device has gained wide applications across different levels of domestic and industrial set-ups. Various studies have been carried out to study, analyse and predict its performance. However, one major phenomenon that limits heat exchanger performance is attributed to fouling. Based on this, various studies and approaches have focused on reduction, elimination and mitigation of fouling. This study therefore focused on this. It reviewed several attempts that have been carried out to understand and mitigate the incidents of fouling in heat exchangers. The study found that despite the existing models More >

  • Open Access

    ARTICLE

    HEAT TRANSFER BOUNDARY LAYER FLOW OF JEFFREY’S FLUID FROM A VERTICAL ISOTHERMAL CONE IN THE PRESENCE OF MICRO-POLAR

    K. Madhavia,b,*, V. Ramachandra Prasada , N. Nagendraa , G.S.S. Rajub

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.29

    Abstract In this article, the combined theoretical and computational study of the magneto hydrodynamic heat transfer in an electro-conductive polymer on the external surface of a vertical truncated cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical truncated cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum and energy equations via appropriate non-similarity transformations. These transformed conservation More >

  • Open Access

    ARTICLE

    FLOW AND HEAT TRANSFER OF CARBON NANOFLUIDS OVER A VERTICAL PLATE

    Mahantesh M Nandeppanavara,*, S. Shakunthalab

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.27

    Abstract In this paper, the buoyancy effect on flow and heat transfer characteristics of nanofluid in presence of carbon nanotubes due to a vertical plate is investigated. The obtained nonlinear PDE’s are converted to the non-linear ordinary differential equations by applying the similarity transformations corresponding to the boundary conditions. These boundary value problems are solved numerically using fourth order Runge-kutta method together with the efficient shooting iteration scheme. The nature of the flow and heat transfer are plotted and discussed in detail. It is noticed that buoyancy effect is very useful in cooling the system and More >

  • Open Access

    ARTICLE

    EFFECT OF HALL CURRENT ON MHD NATURAL CONVECTION HEAT AND MASS TRANSFER FLOW OF ROTATING FLUID PAST A VERTICAL PLATE WITH RAMPED WALL TEMPERATURE

    Gauri Shanker Seth*, Arnab Bhattacharyya, Rajat Tripathi

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.21

    Abstract A study on unsteady MHD natural convection flow of an optically thin, heat radiating, incompressible, viscous, chemically reactive, temperature dependent heat absorbing and electrically conducting fluid past an exponentially accelerated infinite vertical plate having ramped temperature, embedded in a porous medium is carried out, considering the effects of Hall current and rotation. Governing equations are non-dimensionalized and Laplace Transform Technique is used to find the exact solutions for non-dimensional velocity, temperature and concentration fields. The quantities of physical interest i.e. shear stress at the plate, rate of heat and mass transfers at the plate are More >

  • Open Access

    ARTICLE

    VARIABLE THERMAL CONDUCTIVITY INFLUENCE ON HYDROMAGNETIC FLOW PAST A STRETCHING CYLINDER IN A THERMALLY STRATIFIED MEDIUM WITH HEAT SOURCE/SINK

    P. Sreenivasulua,*, T. Poornimab,†, N. Bhaskar Reddyc

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.20

    Abstract This paper examines the variable thermal conductivity influence on MHD flow past a thermally stratified stretching cylinder with heat source or sink. The governing partial differential equations of the flow field are converted to a system of non-linear coupled similarity ordinary differential equations. Employing Shooting technique followed by Runge-Kutta method, the system is solved numerically. The effects of the various physical parameters countered in the flow field on the velocity, temperature as well as the skin friction coefficient and the rate of heat transfer near the wall are computed and illustrated graphically. More >

  • Open Access

    ARTICLE

    MHD SLIP FLOW AND HEAT TRANSFER OVER AN EXPONENTIALLY STRETCHING PERMEABLE SHEET EMBEDDED IN A POROUS MEDIUM WITH HEAT SOURCE

    P. R. Sharmaa , Sushila Choudharya,* , O. D. Makindeb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.18

    Abstract Steady two dimensional laminar magnetohydrodynamic (MHD) slip flow and heat transfer of a viscous incompressible and electrically conducting fluid past over a flat exponentially non-conducting stretching porous sheet embedded in a porous medium with non uniform permeability in the presence of non uniform heat source is investigated. The governing equations of velocity and temperature distributions are solved numerically and the effects of different physical parameters are shown through graphs. The rate of shear stress and the rate of heat transfer at the sheet are derived, discussed numerically and their numerical values for various values of More >

  • Open Access

    ARTICLE

    STEADY-STATE TRANSPORT PHENOMENA ON INDUCED MAGNETIC FIELD MODELLING FOR NON-NEWTONIAN TANGENT HYPERBOLIC FLUID FROM AN ISOTHERMAL SPHERE WITH SORET AND DUFOUR EFFECTS

    A. Subba Raoa,*, L. Nagarajaa,b, M. Sudhakar Reddya , M. Surya Narayana Reddyb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-11, 2017, DOI:10.5098/hmt.9.17

    Abstract This article investigates the theoretical steady magneto hydrodynamic heat flow of incompressible non-Newtonian Tangent Hyperbolic fluid flow over a sphere with Soret and Dufour effects. The governing coupled non-linear partial differential equations are reduced to non-similarity boundary layer equations using appropriate transformation and then solved using the finite difference Keller-Box method. The effect of various flow parameters on the velocity, temperature and concentration are analyzed and presented graphically. More >

  • Open Access

    ARTICLE

    A COMPARATIVE STUDY OF THERMAL RADIATION EFFECTS ON MHD FLOW OF NANOFLUIDS AND HEAT TRANSFER OVER A STRETCHING SHEET

    T. Sravan Kumar, B. Rushi Kumar*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.13

    Abstract In this work, the steady natural convective boundary layer flow of nanofluid and heat transfer over a stretching sheet in the presence of a uniform transverse magnetic field is investigated. We consider two different base fluids and three different nanoparticles were examined as nanofluid. A new model was used in the simulation of nanofluid. Similarity transformations are used to obtain a system of nonlinear ordinary differential equations. The resulting equations are solved numerically by shooting method with Runge-Kutta fourth order scheme (MATLAB package). The effects of various parameters describing the transport in the presence of More >

  • Open Access

    ARTICLE

    WALL ORIENTATION EFFECT ON THE DETACHMENT OF A VAPOR BUBBLE

    Touhami Bakia,*, Djamel Sahela , Ahmed Guessabb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.14

    Abstract Boiling is influenced by a large number of parameters; the angle of orientation constitutes one of these parameters which have a positive impact on the heat transfer. The dynamic of the bubble plays a significant role in the improvement of heat transfer during boiling. For this reason, we are located on the bubble scale and we simulated the detachment of vapor bubble in the liquid water on a heated surface, when the angle of orientation varies from 0 to 180°. We followed the evolution of the sliding of the bubble; it appears that the thermal More >

Displaying 761-770 on page 77 of 975. Per Page