Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (32)
  • Open Access

    ARTICLE

    SwinHCAD: A Robust Multi-Modality Segmentation Model for Brain Tumors Using Transformer and Channel-Wise Attention

    Seyong Jin1, Muhammad Fayaz2, L. Minh Dang3, Hyoung-Kyu Song3, Hyeonjoon Moon2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.070667 - 10 November 2025

    Abstract Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics. While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information, existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors. In order to address these challenges and maximize the performance of brain tumor segmentation, this research introduces a novel SwinUNETR-based model by integrating a new decoder block, the Hierarchical Channel-wise Attention Decoder (HCAD), into a powerful SwinUNETR encoder. The HCAD… More >

  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    Channel-Attention DenseNet with Dilated Convolutions for MRI Brain Tumor Classification

    Abdu Salam1, Mohammad Abrar2, Raja Waseem Anwer3, Farhan Amin4,*, Faizan Ullah5, Isabel de la Torre6,*, Gerardo Mendez Mezquita7, Henry Fabian Gongora7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2457-2479, 2025, DOI:10.32604/cmes.2025.072765 - 26 November 2025

    Abstract Brain tumors pose significant diagnostic challenges due to their diverse types and complex anatomical locations. Due to the increase in precision image-based diagnostic tools, driven by advancements in artificial intelligence (AI) and deep learning, there has been potential to improve diagnostic accuracy, especially with Magnetic Resonance Imaging (MRI). However, traditional state-of-the-art models lack the sensitivity essential for reliable tumor identification and segmentation. Thus, our research aims to enhance brain tumor diagnosis in MRI by proposing an advanced model. The proposed model incorporates dilated convolutions to optimize the brain tumor segmentation and classification. The proposed model… More >

  • Open Access

    ARTICLE

    Advanced Brain Tumor Segmentation in Magnetic Resonance Imaging via 3D U-Net and Generalized Gaussian Mixture Model-Based Preprocessing

    Khalil Ibrahim Lairedj1, Zouaoui Chama1, Amina Bagdaoui1, Samia Larguech2, Younes Menni3,4,*, Nidhal Becheikh5, Lioua Kolsi6,*, Badr M. Alshammari7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2419-2443, 2025, DOI:10.32604/cmes.2025.069396 - 31 August 2025

    Abstract Brain tumor segmentation from Magnetic Resonance Imaging (MRI) supports neurologists and radiologists in analyzing tumors and developing personalized treatment plans, making it a crucial yet challenging task. Supervised models such as 3D U-Net perform well in this domain, but their accuracy significantly improves with appropriate preprocessing. This paper demonstrates the effectiveness of preprocessing in brain tumor segmentation by applying a pre-segmentation step based on the Generalized Gaussian Mixture Model (GGMM) to T1 contrast-enhanced MRI scans from the BraTS 2020 dataset. The Expectation-Maximization (EM) algorithm is employed to estimate parameters for four tissue classes, generating a More >

  • Open Access

    ARTICLE

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

    Yao-Tien Chen1, Nisar Ahmad1,*, Khursheed Aurangzeb2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1197-1224, 2025, DOI:10.32604/cmes.2025.066580 - 31 July 2025

    Abstract Accurate and efficient brain tumor segmentation is essential for early diagnosis, treatment planning, and clinical decision-making. However, the complex structure of brain anatomy and the heterogeneous nature of tumors present significant challenges for precise anomaly detection. While U-Net-based architectures have demonstrated strong performance in medical image segmentation, there remains room for improvement in feature extraction and localization accuracy. In this study, we propose a novel hybrid model designed to enhance 3D brain tumor segmentation. The architecture incorporates a 3D ResNet encoder known for mitigating the vanishing gradient problem and a 3D U-Net decoder. Additionally, to… More > Graphic Abstract

    Enhancing 3D U-Net with Residual and Squeeze-and-Excitation Attention Mechanisms for Improved Brain Tumor Segmentation in Multimodal MRI

  • Open Access

    ARTICLE

    Switchable Normalization Based Faster RCNN for MRI Brain Tumor Segmentation

    Rachana Poongodan1, Dayanand Lal Narayan2, Deepika Gadakatte Lokeshwarappa3, Hirald Dwaraka Praveena4, Dae-Ki Kang5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5751-5772, 2025, DOI:10.32604/cmc.2025.066314 - 30 July 2025

    Abstract In recent decades, brain tumors have emerged as a serious neurological disorder that often leads to death. Hence, Brain Tumor Segmentation (BTS) is significant to enable the visualization, classification, and delineation of tumor regions in Magnetic Resonance Imaging (MRI). However, BTS remains a challenging task because of noise, non-uniform object texture, diverse image content and clustered objects. To address these challenges, a novel model is implemented in this research. The key objective of this research is to improve segmentation accuracy and generalization in BTS by incorporating Switchable Normalization into Faster R-CNN, which effectively captures the… More >

  • Open Access

    ARTICLE

    Research on Multimodal Brain Tumor Segmentation Algorithm Based on Feature Decoupling and Information Bottleneck Theory

    Xuemei Yang1, Yuting Zhou2, Shiqi Liu1, Junping Yin2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 3281-3307, 2025, DOI:10.32604/cmc.2024.057991 - 17 February 2025

    Abstract Aiming at the problems of information loss and the relationship between features and target tasks in multimodal medical image segmentation, a multimodal medical image segmentation algorithm based on feature decoupling and information bottleneck theory is proposed in this paper. Based on the reversible network, the bottom-up learning method for different modal information is constructed, which enhances the features’ expression ability and the network’s learning ability. The feature fusion module is designed to balance multi-directional information flow. To retain the information relevant to the target task to the maximum extent and suppress the information irrelevant to… More >

  • Open Access

    REVIEW

    Advancements in Liver Tumor Detection: A Comprehensive Review of Various Deep Learning Models

    Shanmugasundaram Hariharan1, D. Anandan2, Murugaperumal Krishnamoorthy3, Vinay Kukreja4, Nitin Goyal5, Shih-Yu Chen6,7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 91-122, 2025, DOI:10.32604/cmes.2024.057214 - 17 December 2024

    Abstract Liver cancer remains a leading cause of mortality worldwide, and precise diagnostic tools are essential for effective treatment planning. Liver Tumors (LTs) vary significantly in size, shape, and location, and can present with tissues of similar intensities, making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging. This review examines recent advancements in Liver Segmentation (LS) and Tumor Segmentation (TS) algorithms, highlighting their strengths and limitations regarding precision, automation, and resilience. Performance metrics are utilized to assess key detection algorithms and analytical methods, emphasizing their effectiveness and relevance in clinical contexts. The More >

  • Open Access

    ARTICLE

    Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging: Comparative Analysis of 2D, 2.5D, and 3D Approaches Using UNet Transformer

    Mohammed A. Mahdi1, Shahanawaj Ahamad2, Sawsan A. Saad3, Alaa Dafhalla3, Alawi Alqushaibi4, Rizwan Qureshi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2351-2373, 2024, DOI:10.32604/cmes.2024.055723 - 31 October 2024

    Abstract The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomography (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this study addresses key research gaps in the application of deep learning techniques to multimodal medical images. Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding this study… More >

  • Open Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024

    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

Displaying 1-10 on page 1 of 32. Per Page