Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    ARTICLE

    An Experimental Study of Two-Phase Flow in Porous Media with Measurement of Relative Permeability

    N. Labed1, L. Bennamoun2, J.P. Fohr3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 423-436, 2012, DOI:10.3970/fdmp.2012.008.423

    Abstract Intrinsic and relative permeability are indispensable parameters for performing transfers in porous media. In this paper, the conception and ensuing exploitation of a new testing ground for measuring the relative permeability of water and nitrogen are presented. The experimental work was elaborated in the Laboratory of Thermal Studies in Poitiers, (France) where brick samples were used to verify the performance of the proposed testing strategy. The results prove the existence of several stages during the drainage and the imbibitions. In particular, the three stages observed for the case of gas permeability reduce to only two steps for liquid permeability. Comparison… More >

  • Open Access

    ARTICLE

    Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method.

    Mark Sussman1, Mitsuhiro Ohta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.3, No.1, pp. 21-36, 2007, DOI:10.3970/fdmp.2007.003.021

    Abstract In this paper, we describe new techniques for numerically approximating two-phase flows. Specifically, we present new techniques for treating the viscosity and surface tension terms that appear in the Navier-Stokes equations for incompressible two-phase flow. Our resulting numerical method has the property that results computed using our two-phase algorithm approach the corresponding "one-phase'' algorithm in the limit of zero gas density/viscosity; i.e. the two-phase results approach the one-phase free-boundary results in the limit that the gas is assumed to become a uniform pressure void. By grid convergence checks and comparison with previous experimental data, we shall demonstrate the advantages of… More >

  • Open Access

    ARTICLE

    Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

    B. Wang1, H.Q. Zhang1, C.K. Chan2, X.L. Wang1

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 275-288, 2004, DOI:10.3970/cmc.2004.001.275

    Abstract Dilute gas-particle turbulent flow over a backward-facing step is numerically simulated. Large Eddy Simulation (LES) is used for the continuous phase and a Lagrangian trajectory method is adopted for the particle phase. Four typical locations in the flow field are chosen to investigate the two-phase velocity fluctuations. Time-series velocities of the gas phase with particles of different sizes are obtained. Velocity of the small particles is found to be similar to that of the gas phase, while high frequency noise exists in the velocity of the large particles. While the mean and rms velocities of the gas phase and small… More >

Displaying 71-80 on page 8 of 73. Per Page