Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (130)
  • Open Access

    ARTICLE

    A Synergistic Multi-Attribute Decision-Making Method for Educational Institutions Evaluation Using Similarity Measures of Possibility Pythagorean Fuzzy Hypersoft Sets

    Khuram Ali Khan1, Saba Mubeen Ishfaq1, Atiqe Ur Rahman2, Salwa El-Morsy3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 501-530, 2025, DOI:10.32604/cmes.2024.057865 - 17 December 2024

    Abstract Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty, evaluating educational institutions can be difficult. The concept of a possibility Pythagorean fuzzy hypersoft set (pPyFHSS) is more flexible in this regard than other theoretical fuzzy set-like models, even though some attempts have been made in the literature to address such uncertainties. This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union, intersection, complement, OR- and AND-operations. Some results related to these operations are also modified for pPyFHSS. Additionally, the similarity measures between pPyFHSSs are More >

  • Open Access

    ARTICLE

    Orthogonal Probability Approximation for Highly Accurate and Efficient Orbit Uncertainty Propagation

    Pugazhenthi Sivasankar1,*, Austin B. Probe2, Tarek A. Elgohary1

    Digital Engineering and Digital Twin, Vol.2, pp. 169-205, 2024, DOI:10.32604/dedt.2024.052805 - 31 December 2024

    Abstract In Space Situational Awareness (SSA), accurate and efficient uncertainty quantification and propagation are essential for various applications, such as conjunction analysis, track correlation, and orbit prediction. The propagation of the probability density function (PDF) in nonlinear systems results in non-Gaussian distributions, which are difficult to approximate. Furthermore, the computational cost of approximating the PDF increases exponentially with the number of random variables, a phenomenon known as the curse of dimensionality. To address these challenges, the Orthogonal Probability Approximation (OPA) method is presented for high-fidelity uncertainty propagation and PDF approximation in nonlinear dynamical systems. The method… More >

  • Open Access

    PROCEEDINGS

    A Study on the Extraction and Evaluation Method of Virtual Strain

    Peiyan Wang1,*, Haoyu Wang1, Minghui Liu2, Fuchao Liu1, Zhufeng Yue1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011318

    Abstract The virtual test is supported by the physical test data, and a high-precision simulation model needs to be established to maximize the alignment between the simulation prediction results and the physical test data. It can replace other physical tests and achieve the goal of reducing the design cycle time and cost. However, due to the errors caused by the position and angle deviation of the strain gauge paste, as well as the sensitivity coefficient of the strain gauge and the wire, it is difficult for the simulation results to correspond to the test results in… More >

  • Open Access

    ARTICLE

    Distributed Robust Scheduling Optimization of Wind-Thermal-Storage System Based on Hybrid Carbon Trading and Wasserstein Fuzzy Set

    Gang Wang*, Yuedong Wu, Xiaoyi Qian, Yi Zhao

    Energy Engineering, Vol.121, No.11, pp. 3417-3435, 2024, DOI:10.32604/ee.2024.052268 - 21 October 2024

    Abstract A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the instability of large-scale wind power access systems. A hybrid carbon trading mechanism that combines short-term and long-term carbon trading is constructed, and a fuzzy set based on Wasserstein measurement is proposed to address the uncertainty of wind power access. Moreover, a robust scheduling optimization method for wind–fire storage systems is formed. Results of the multi scenario comparative analysis of practical cases show that the More >

  • Open Access

    ARTICLE

    A Facial Expression Recognition Method Integrating Uncertainty Estimation and Active Learning

    Yujian Wang1, Jianxun Zhang1,*, Renhao Sun2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 533-548, 2024, DOI:10.32604/cmc.2024.054644 - 15 October 2024

    Abstract The effectiveness of facial expression recognition (FER) algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data. However, labeling large datasets demands significant human, time, and financial resources. Although active learning methods have mitigated the dependency on extensive labeled data, a cold-start problem persists in small to medium-sized expression recognition datasets. This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics. This paper introduces an active learning approach that integrates uncertainty estimation, aiming to improve the precision of facial… More >

  • Open Access

    PROCEEDINGS

    Distribution Transport: A High-Efficiency Method for Orbital Uncertainty Propagation

    Changtao Wang1, Honghua Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010943

    Abstract Orbital uncertainty propagation is fundamental in space situational awareness-related missions such as orbit prediction and tracking. Linear models and full nonlinear Monte Carlo simulations were primarily used to propagate uncertainties [1]. However, these methods hampered the application due to low precision and intensive computation. Over the past two decades, numerous nonlinear uncertainty propagators have been proposed. Among these methods, the state transition tensor (STT) method has been widely used due to its controllable accuracy and high efficiency [2]. However, this method has two drawbacks. First, its semi-analytical formulation is too intricate to implement, which hinders… More >

  • Open Access

    PROCEEDINGS

    Uncertainty Quantification of Complex Engineering Structures Using PCE-HDMR

    Xinxin Yue1, Jian Zhang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011344

    Abstract The "curse of dimensionality" faced by high-dimensional complex engineering problems can be tackled by a set of quantitative model evaluation and analysis tools named high-dimensional model representation (HDMR) [1,2], which has attracted much attention from researchers in various fields, such as global sensitivity analysis (GSA) [3], structural reliability analysis (SRA) [4], CFD uncertainty quantification [5] and so on [6]. In this paper, a new method for uncertainty quantification is proposed. Firstly, PCE-HDMR for SRA is developed by taking advantage of the accuracy and efficiency of PCE-HDMR for modeling high-dimensional problems [7]. Secondly, the formulas for… More >

  • Open Access

    ARTICLE

    A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties

    Rajan Aravind1,2, Sundararajan Natarajan1, Krishnankutty Jayakumar2, Ratna Kumar Annabattula1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 997-1032, 2024, DOI:10.32604/cmes.2024.053047 - 27 September 2024

    Abstract Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications. This is all the more important when elements composed of brittle materials are exposed to dynamic environments, resulting in catastrophic fatigue failures. The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables. Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the… More >

  • Open Access

    ARTICLE

    A Two-Stage Scenario-Based Robust Optimization Model and a Column-Row Generation Method for Integrated Aircraft Maintenance-Routing and Crew Rostering

    Khalilallah Memarzadeh1, Hamed Kazemipoor1,*, Mohammad Fallah1, Babak Farhang Moghaddam2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1275-1304, 2024, DOI:10.32604/cmes.2024.050306 - 27 September 2024

    Abstract Motivated by a critical issue of airline planning process, this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions. Following the route network scheme and generated flight timetables, aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management. This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints, rules, and regulations. Considering multiple locations for airline maintenance and crew bases, we solve the problem of integrated… More > Graphic Abstract

    A Two-Stage Scenario-Based Robust Optimization Model and a Column-Row Generation Method for Integrated Aircraft Maintenance-Routing and Crew Rostering

  • Open Access

    ARTICLE

    Post-COVID-19 Challenges for Full-Time Employees in China: Job Insecurity, Workplace Anxiety and Work-Life Conflict

    Tianfei Yang1, Xianyi Long2,*

    International Journal of Mental Health Promotion, Vol.26, No.9, pp. 719-730, 2024, DOI:10.32604/ijmhp.2024.053705 - 20 September 2024

    Abstract Background: Though the COVID-19 pandemic recedes, and our society gradually returns to normal, Chinese people’s work and lifestyles are still influenced by the “pandemic aftermath”. In the post-pandemic era, employees may feel uncertainty at work due to the changed organizational operations and management and perceive the external environment to be more dynamic. Both these perceptions may increase employees’ negative emotions and contribute to conflicts between work and life. Drawing from the ego depletion theory, this study aimed to examine the impact of job insecurity during the post-pandemic era on employees’ work-life conflicts, and the mediating… More >

Displaying 21-30 on page 3 of 130. Per Page