Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Artificial Intelligence (AI)-Enabled Unmanned Aerial Vehicle (UAV) Systems for Optimizing User Connectivity in Sixth-Generation (6G) Ubiquitous Networks

    Zeeshan Ali Haider1, Inam Ullah2,*, Ahmad Abu Shareha3, Rashid Nasimov4, Sufyan Ali Memon5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.071042 - 10 November 2025

    Abstract The advent of sixth-generation (6G) networks introduces unprecedented challenges in achieving seamless connectivity, ultra-low latency, and efficient resource management in highly dynamic environments. Although fifth-generation (5G) networks transformed mobile broadband and machine-type communications at massive scales, their properties of scaling, interference management, and latency remain a limitation in dense high mobility settings. To overcome these limitations, artificial intelligence (AI) and unmanned aerial vehicles (UAVs) have emerged as potential solutions to develop versatile, dynamic, and energy-efficient communication systems. The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning (CoRL) to manage an autonomous network.… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Dynamic Adaptive Routing (DAR) for Unmanned Aerial Vehicle (UAV) Networks

    Khadija Slimani1,2,*, Samira Khoulji2, Hamed Taherdoost3,4, Mohamed Larbi Kerkeb5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4115-4132, 2025, DOI:10.32604/cmc.2025.066544 - 23 September 2025

    Abstract Reliable and efficient communication is essential for Unmanned Aerial Vehicle (UAV) networks, especially in dynamic and resource-constrained environments such as disaster management, surveillance, and environmental monitoring. Frequent topology changes, high mobility, and limited energy availability pose significant challenges to maintaining stable and high-performance routing. Traditional routing protocols, such as Ad hoc On-Demand Distance Vector (AODV), Load-Balanced Optimized Predictive Ad hoc Routing (LB-OPAR), and Destination-Sequenced Distance Vector (DSDV), often experience performance degradation under such conditions. To address these limitations, this study evaluates the effectiveness of Dynamic Adaptive Routing (DAR), a protocol designed to adapt routing decisions… More >

  • Open Access

    ARTICLE

    URLLC Service in UAV Rate-Splitting Multiple Access: Adapting Deep Learning Techniques for Wireless Network

    Reem Alkanhel1,#, Abuzar B. M. Adam2,#, Samia Allaoua Chelloug1, Dina S. M. Hassan1,*, Mohammed Saleh Ali Muthanna3, Ammar Muthanna4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 607-624, 2025, DOI:10.32604/cmc.2025.063206 - 09 June 2025

    Abstract The 3GPP standard defines the requirements for next-generation wireless networks, with particular attention to Ultra-Reliable Low-Latency Communications (URLLC), critical for applications such as Unmanned Aerial Vehicles (UAVs). In this context, Non-Orthogonal Multiple Access (NOMA) has emerged as a promising technique to improve spectrum efficiency and user fairness by allowing multiple users to share the same frequency resources. However, optimizing key parameters–such as beamforming, rate allocation, and UAV trajectory–presents significant challenges due to the nonconvex nature of the problem, especially under stringent URLLC constraints. This paper proposes an advanced deep learning-driven approach to address the resulting… More >

  • Open Access

    ARTICLE

    Outage Analysis of Optimal UAV Cooperation with IRS via Energy Harvesting Enhancement Assisted Computational Offloading

    Baofeng Ji1,2,3,*, Ying Wang1,2,3, Weixing Wang1, Shahid Mumtaz4, Charalampos Tsimenidis4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1885-1905, 2024, DOI:10.32604/cmes.2023.030872 - 17 November 2023

    Abstract The utilization of mobile edge computing (MEC) for unmanned aerial vehicle (UAV) communication presents a viable solution for achieving high reliability and low latency communication. This study explores the potential of employing intelligent reflective surfaces (IRS) and UAVs as relay nodes to efficiently offload user computing tasks to the MEC server system model. Specifically, the user node accesses the primary user spectrum, while adhering to the constraint of satisfying the primary user peak interference power. Furthermore, the UAV acquires energy without interrupting the primary user’s regular communication by employing two energy harvesting schemes, namely time… More >

  • Open Access

    ARTICLE

    Energy Efficiency Maximization in Mobile Edge Computing Networks via IRS assisted UAV Communications

    Ying Zhang1, Weiming Niu2, Supu Xiu1,3, Guangchen Mu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1865-1884, 2024, DOI:10.32604/cmes.2023.030114 - 17 November 2023

    Abstract In this paper, we investigate the energy efficiency maximization for mobile edge computing (MEC) in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communications. In particular, UAV can collect the computing tasks of the terrestrial users and transmit the results back to them after computing. We jointly optimize the users’ transmitted beamforming and uploading ratios, the phase shift matrix of IRS, and the UAV trajectory to improve the energy efficiency. The formulated optimization problem is highly non-convex and difficult to be solved directly. Therefore, we decompose the original problem into three sub-problems. We first More >

  • Open Access

    ARTICLE

    IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks

    Ying Zhang1,*, Weiming Niu2, Leibing Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 885-902, 2024, DOI:10.32604/cmes.2023.029234 - 22 September 2023

    Abstract In this paper, we consider mobile edge computing (MEC) networks against proactive eavesdropping. To maximize the transmission rate, IRS assisted UAV communications are applied. We take the joint design of the trajectory of UAV, the transmitting beamforming of users, and the phase shift matrix of IRS. The original problem is strong non-convex and difficult to solve. We first propose two basic modes of the proactive eavesdropper, and obtain the closed-form solution for the boundary conditions of the two modes. Then we transform the original problem into an equivalent one and propose an alternating optimization (AO) More >

  • Open Access

    ARTICLE

    Secrecy Efficiency Maximization in Intelligent Reflective Surfaces Assisted UAV Communications

    Hui Wei, Leibing Yan*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1805-1824, 2023, DOI:10.32604/cmes.2023.028072 - 26 June 2023

    Abstract This paper focuses on the secrecy efficiency maximization in intelligent reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communication. With the popularization of UAV technology, more and more communication scenarios need UAV support. We consider using IRS to improve the secrecy efficiency. Specifically, IRS and UAV trajectories work together to counter potential eavesdroppers, while balancing the secrecy rate and energy consumption. The original problem is difficult to solve due to the coupling of optimization variables. We first introduce secrecy efficiency as an auxiliary variable and propose relaxation optimization problem, and then prove the equivalence between More >

  • Open Access

    ARTICLE

    Received Power Based Unmanned Aerial Vehicles (UAVs) Jamming Detection and Nodes Classification Using Machine Learning

    Waleed Aldosari*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1253-1269, 2023, DOI:10.32604/cmc.2023.036111 - 06 February 2023

    Abstract This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks on Wireless Sensor Networks (WSNs). Jamming is a type of Denial of Service (DoS) attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly. To defend and prevent such attacks, the first step is to detect them. The current detection approaches use centralized techniques to detect jamming, where each node collects information and forwards it to the base station. As a… More >

  • Open Access

    ARTICLE

    Deep Reinforcement Learning Based Unmanned Aerial Vehicle (UAV) Control Using 3D Hand Gestures

    Fawad Salam Khan1,4, Mohd Norzali Haji Mohd1,*, Saiful Azrin B. M. Zulkifli2, Ghulam E Mustafa Abro2, Suhail Kazi3, Dur Muhammad Soomro1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5741-5759, 2022, DOI:10.32604/cmc.2022.024927 - 21 April 2022

    Abstract The evident change in the design of the autopilot system produced massive help for the aviation industry and it required frequent upgrades. Reinforcement learning delivers appropriate outcomes when considering a continuous environment where the controlling Unmanned Aerial Vehicle (UAV) required maximum accuracy. In this paper, we designed a hybrid framework, which is based on Reinforcement Learning and Deep Learning where the traditional electronic flight controller is replaced by using 3D hand gestures. The algorithm is designed to take the input from 3D hand gestures and integrate with the Deep Deterministic Policy Gradient (DDPG) to receive… More >

  • Open Access

    ARTICLE

    Safety Helmet Wearing Detection in Aerial Images Using Improved YOLOv4

    Wei Chen1, Mi Liu1,*, Xuhong Zhou2, Jiandong Pan3, Haozhi Tan4

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3159-3174, 2022, DOI:10.32604/cmc.2022.026664 - 29 March 2022

    Abstract In construction, it is important to check whether workers wear safety helmets in real time. We proposed using an unmanned aerial vehicle (UAV) to monitor construction workers in real time. As the small target of aerial photography poses challenges to safety-helmet-wearing detection, we proposed an improved YOLOv4 model to detect the helmet-wearing condition in aerial photography: (1) By increasing the dimension of the effective feature layer of the backbone network, the model's receptive field is reduced, and the utilization rate of fine-grained features is improved. (2) By introducing the cross stage partial (CSP) structure into… More >

Displaying 1-10 on page 1 of 12. Per Page