Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (123)
  • Open Access

    ARTICLE

    Building Regulatory Confidence with Human-in-the-Loop AI in Paperless GMP Validation

    Manaliben Amin*

    Journal on Artificial Intelligence, Vol.8, pp. 1-18, 2026, DOI:10.32604/jai.2026.073895 - 07 January 2026

    Abstract Artificial intelligence (AI) is steadily making its way into pharmaceutical validation, where it promises faster documentation, smarter testing strategies, and better handling of deviations. These gains are attractive, but in a regulated environment speed is never enough. Regulators want assurance that every system is reliable, that decisions are explainable, and that human accountability remains central. This paper sets out a Human-in-the-Loop (HITL) AI approach for Computer System Validation (CSV) and Computer Software Assurance (CSA). It relies on explainable AI (XAI) tools but keeps structured human review in place, so automation can be used without creating… More >

  • Open Access

    ARTICLE

    Integrative Multi-Omics Analysis and Experiments Validation Identify COX5B as a Novel Therapeutic Target for Lung Adenocarcinoma

    Lv Ling1,#, Minying Lu2,#, Ling Ye3, Yuanhang Chen2, Sheng Lin2, Jun Yang2, Yu Rong2,*, Guixiong Wu4,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069889 - 30 December 2025

    Abstract Background: A significant proportion of patients still cannot benefit from existing targeted therapies and immunotherapies, making the search for new treatment strategies extremely urgent. In this study, we combined integrate public data analysis with experimental validation to identify novel prognostic biomarkers and therapeutic targets for lung adenocarcinoma (LUAD). Methods: We analyzed RNA and protein databases to assess the expression levels of cytochrome C oxidase 5B (COX5B) in LUAD. Several computational algorithms were employed to investigate the relationship between COX5B and immune infiltration in LUAD. To further elucidate the role of COX5B in LUAD, we utilized… More > Graphic Abstract

    Integrative Multi-Omics Analysis and Experiments Validation Identify COX5B as a Novel Therapeutic Target for Lung Adenocarcinoma

  • Open Access

    ARTICLE

    Pan-Cancer Analysis of Enhancer-Induced PAN3-AS1 and Experimental Validation as a WFDC13-Promoting Factor in Colon Cancer

    Xu Guo1, Yanan Yu2, Xiaolin Ma3, Yuanjie Cai1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.069274 - 30 December 2025

    Abstract Background: Long non-coding RNAs (lncRNAs) act as epigenetic regulators for tumor hallmarks. This investigation sought to probe the carcinogenic trait of PAN3-AS1 across pan-cancer comprehensively. Methods: We studied the diagnostic and prognostic features and the immune landscape of PAN3-AS1 across pan-cancer by bioinformatics approaches. The hierarchical regulatory networks governing PAN3-AS1 expression in colon cancer were explored via chromatin immunoprecipitation, luciferase activity assays, and RNA immunoprecipitation, etc. We screened drugs sensitive to WAP four-disulfide core domain 13 (WFDC13) by virtual screening and molecular docking. Results: Single-cell transcriptomics demonstrated that a variety of immune populations abnormally expressed PAN3-AS1… More >

  • Open Access

    ARTICLE

    Validation of Contextual Model Principles through Rotated Images Interpretation

    Illia Khurtin*, Mukesh Prasad

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.067481 - 09 December 2025

    Abstract The field of artificial intelligence has advanced significantly in recent years, but achieving a human-like or Artificial General Intelligence (AGI) remains a theoretical challenge. One hypothesis suggests that a key issue is the formalisation of extracting meaning from information. Meaning emerges through a three-stage interpretative process, where the spectrum of possible interpretations is collapsed into a singular outcome by a particular context. However, this approach currently lacks practical grounding. In this research, we developed a model based on contexts, which applies interpretation principles to the visual information to address this gap. The field of computer… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    Jet Pump Structural Optimization through CFD Analysis and Experimental Validation

    Zhengqiang Peng1,*, Rendong Feng1, Fang Han1, Jing Guo1, Shen Chi1, Wenao Huang1, Jie Luo2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 2945-2961, 2025, DOI:10.32604/fdmp.2025.073281 - 31 December 2025

    Abstract Jet pumps often suffer from efficiency losses due to the intense mixing of power and suction fluids, which leads to significant kinetic energy dissipation. Enhancing the efficiency of such pumps requires careful optimization of their structural parameters. In this study, a computational fluid dynamics (CFD) model of a hydraulic jet sand-flushing pump is developed to investigate the effects of throat-to-nozzle distance, area ratio, and throat length on the pump’s sand-carrying performance. An orthogonal experimental design is employed to optimize the structural parameters, while the influence of sand characteristics on pumping performance is systematically evaluated. Complementary… More >

  • Open Access

    ARTICLE

    Specific Internet-Use Disorders among Indonesian College Students: Psychometric Evaluation of the Assessment of Criteria for Specific Internet-Use Disorders (ACSID-11)

    Siti Rahayu Nadhiroh1,*, Ira Nurmala2, Iqbal Pramukti3, Kamolthip Ruckwongpatr4, Laila Wahyuning Tyas2, Afina Puspita Zari2, Warda Eka Islamiah1, Yan-Li Siaw5, Marc N. Potenza6,7,8,9,10,11, Chung-Ying Lin12,13,14,15,*

    International Journal of Mental Health Promotion, Vol.27, No.12, pp. 1847-1865, 2025, DOI:10.32604/ijmhp.2025.072115 - 31 December 2025

    Abstract Objectives: Problematic use of the internet (PUI) has been increasingly associated with various mental health issues, highlighting the need for accurate assessment tools. The Assessment of Criteria for Specific Internet-use Disorder (ACSID-11) is a validated psychometric instrument designed to measure distinct forms of PUI across multiple online activities. However, its applicability and validity have not yet been established within the Indonesian context. Therefore, this study aimed to translate and validate the ACSID-11 for use among Indonesian populations. Methods: The translation procedure of the ACSID-11 involved forward translation, back translation, and expert panel discussions. This research involved… More >

  • Open Access

    ARTICLE

    PPG Based Digital Biomarker for Diabetes Detection with Multiset Spatiotemporal Feature Fusion and XAI

    Mubashir Ali1,2, Jingzhen Li1, Zedong Nie1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4153-4177, 2025, DOI:10.32604/cmes.2025.073048 - 23 December 2025

    Abstract Diabetes imposes a substantial burden on global healthcare systems. Worldwide, nearly half of individuals with diabetes remain undiagnosed, while conventional diagnostic techniques are often invasive, painful, and expensive. In this study, we propose a noninvasive approach for diabetes detection using photoplethysmography (PPG), which is widely integrated into modern wearable devices. First, we derived velocity plethysmography (VPG) and acceleration plethysmography (APG) signals from PPG to construct multi-channel waveform representations. Second, we introduced a novel multiset spatiotemporal feature fusion framework that integrates hand-crafted temporal, statistical, and nonlinear features with recursive feature elimination and deep feature extraction using… More >

  • Open Access

    ARTICLE

    Performance Boundaries of Air- and Ground-Coupled GPR for Void Detection in Multilayer Reinforced HSR Tunnel Linings: Simulation and Field Validation

    Yang Lei1,*, Bo Jiang1, Yucai Zhao2, Gaofeng Fu3, Falin Qi1, Tian Tian1, Qiankuan Feng1, Qiming Qu1

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1657-1679, 2025, DOI:10.32604/sdhm.2025.069415 - 17 November 2025

    Abstract Detecting internal defects, particularly voids behind linings, is critical for ensuring the structural integrity of aging high-speed rail (HSR) tunnel networks. While ground-penetrating radar (GPR) is widely employed, systematic quantification of performance boundaries for air-coupled (A-CGPR) and ground-coupled (G-CGPR) systems within the complex electromagnetic environment of multilayer reinforced HSR tunnels remains limited. This study establishes physics-based quantitative performance limits for A-CGPR and G-CGPR through rigorously validated GPRMax finite-difference time-domain (FDTD) simulations and comprehensive field validation over a 300 m operational HSR tunnel section. Key performance metrics were quantified as functions of: (a) detection distance (A-CGPR:… More >

  • Open Access

    ARTICLE

    Psychometric Properties of the Shortened Chinese Version of the Community Attitudes towards the Mentally Ill Scale

    Si-Yu Gao1, Siu-Man Ng2,*

    International Journal of Mental Health Promotion, Vol.27, No.10, pp. 1471-1482, 2025, DOI:10.32604/ijmhp.2025.068702 - 31 October 2025

    Abstract Background: Existing Chinese stigma scales focus on the perceptions of people with mental illness (PMI) without assessing the general public’s attitudes toward integrating PMI into the community. Developing a valid and reliable Chinese instrument measuring the attitude domain will be helpful to future research in this area. The current study aimed to validate a shortened Chinese version of the Community Attitudes towards the Mentally Ill Scale (C-CAMI-SF). Methods: Four hundred participants who are (1) Chinese; (2) aged 18 years and above; and (3) able to complete the Chinese questionnaire in a self-reported manner participated in… More >

Displaying 1-10 on page 1 of 123. Per Page