Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    ARTICLE

    Facts and Effects to be Considered when Validating 2D and 3D UD Composite Failure Conditions - experiences from participation in the World-Wide-Failure-Exercise

    R. G. Cuntze1

    Structural Durability & Health Monitoring, Vol.6, No.3&4, pp. 123-160, 2010, DOI:10.3970/sdhm.2010.006.123

    Abstract The paper deals with the validation of 2D and 3D failure conditions of unidirectional (UD) composites composed of endless fibres and thermoset matrices. The generation of these failure conditions is shortly described and then applied to test cases of the World-Wide-Failure-Exercises WWFE-I and II, organized by Qinetic in the past 20 years. The derivation of the conditions for the brittle fracture failure experiencing UD lamina material was based on the author's so-called Failure Mode Concept (FMC) which basically builds up on the hypotheses of Beltrami and Mohr-Coulomb. The generally applicable FMC is applied here to UD material. Essential topics of… More >

  • Open Access

    ARTICLE

    Electromechanical Impedance Method for the Health Monitoring of Bonded Joints: Numerical Modelling and Experimental Validation

    Vincenzo Gulizzi1,2, Piervincenzo Rizzo2,3, Alberto Milazzo4

    Structural Durability & Health Monitoring, Vol.10, No.1, pp. 19-54, 2014, DOI:10.3970/sdhm.2014.010.019

    Abstract The electromechanical impedance (EMI) method is one of the many nondestructive evaluation approaches proposed for the health monitoring of aerospace, civil, and mechanical structures. The method consists of attaching or embedding one or more wafer-type piezoelectric transducers (PZTs) to the system of interest, the host structure, and measuring certain electrical characteristics of the transducers. As these characteristics are also related to the impedance of the host structure, they can be used to infer the mechanical properties of the monitored structure. In the study presented in this paper, we utilize the EMI to monitor the quality of adhesively bonded joints. A… More >

  • Open Access

    ABSTRACT

    Implement and validation of Viscous Numerical Wave Flume Based on Finite Element Method and CLEAR-VOF Method

    Lin LU, Bin TENG, Bing CHEN

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 133-134, 2011, DOI:10.3970/icces.2011.019.133

    Abstract This work describes the numerical implements of a two-dimensional viscous numerical wave flume, which is based on the Finite Element Method (FEM), Computational lagrangian-Eulerian Advection Remap Volume of Fluid Method (CLEAR-VOF), internal wave generation and artificial wave damping technique. Owning to the inherent consistence of CLEAR-VOF with FEM, the present numerical model allows the simulations of wave propagation and interaction with structures to be simulated with irregular mesh partition. The present numerical wave flume is validated by several applications in comparisons with available experimental data and numerical results, including the problems of standing wave trains in front of vertical wall,… More >

  • Open Access

    ABSTRACT

    Simulation of damage in textile composites: model development and experimental validation

    I. Verpoest1,2, S.V. Lomov1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.4, pp. 73-74, 2009, DOI:10.3970/icces.2009.013.073

    Abstract The paper will first introduce the general approach developed at the Katholieke Universiteit Leuven for modeling the internal structure of textiles and for prediction of the mechanical properties of textile based composites.
    Then, the results of experimental observations of damage processes during tensile quasi-static and fatigue loading for carbon/epoxy textile composites will be presented, more specifically for (1) woven fabrics; (2) non-crimp fabrics (NCF); (3) structurally stitched NCF. The test methodology includes, apart from the “normal” tensile testing, registration of acoustic emission and full-field measurements of strains on the surface of the sample. The damage in the samples loaded… More >

  • Open Access

    ABSTRACT

    Patient Specific Knee Joint Finite Element Model Validation with High Accuracy Kinematics from Biplane Dynamic Radiography

    G. Papaioannou1, G. Nianios1, C. Mitroyiannis1, S.Tashman2, K.H. Yang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.8, No.1, pp. 7-12, 2008, DOI:10.3970/icces.2008.008.007

    Abstract Little is known about in vivo menisci loads and displacements in the knee during strenuous activities. We have developed a method that combines biplane high-speed dynamic radiography (DRSA) and a subject-specific finite element model for studying in vivo meniscal behavior. In a very controlled uniaxial compression loading condition, removing of the pressure sensor from the model can result in relatively large errors in contact and cartilage stress that are not reflected in the change of meniscal displacement. More >

  • Open Access

    ABSTRACT

    Review of existing numerical methods and validation procedure available for bird strike modelling

    M-A Lavoie1, A. Gakwaya1, M. Nejad Ensan2, D.G. Zimcik2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.2, No.4, pp. 111-118, 2007, DOI:10.3970/icces.2007.002.111

    Abstract This paper reviews numerical methods that are currently available to simulate bird strike as well as the theory of the event. It also summarizes important parameters and provides guidelines as to how to set up the analysis and how to evaluate a model. The information provided is based on physical properties and available results regarding a bird and its behaviour upon impact. The simulations have been performed with LS-DYNA 970 but can be done in similar dynamic finite elements analysis codes. More >

  • Open Access

    ARTICLE

    Probabilistic Performance-Based Optimum Seismic Design Framework: Illustration and Validation

    Yong Li1,*, Joel P. Conte2, Philip E. Gill3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 517-543, 2019, DOI:10.32604/cmes.2019.06269

    Abstract In the field of earthquake engineering, the advent of the performance-based design philosophy, together with the highly uncertain nature of earthquake ground excitations to structures, has brought probabilistic performance-based design to the forefront of seismic design. In order to design structures that explicitly satisfy probabilistic performance criteria, a probabilistic performance-based optimum seismic design (PPBOSD) framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering (PBEE) methodology. PBEE is traditionally used for risk evaluation of existing or newly designed structural systems, thus referred to herein as forward PBEE analysis. In contrast, its use for design purposes is limited… More >

  • Open Access

    ARTICLE

    Numerical Validations of the Tangent Linear Model for the Lorenz Equations

    Tengjin Zhao1, Jing Zhang1, Zhilin Li2, Zhiyue Zhang1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 83-104, 2019, DOI:10.32604/cmes.2019.04483

    Abstract The validity of the tangent linear model (TLM) is studied numerically using the example of the Lorenz equations in this paper. The relationship between the limit of the validity time of the TLM and initial perturbations for the Lorenz equations is investigated using the Monte Carlo sampling method. A new error function between the nonlinear and the linear evolution of the perturbations is proposed. Furthermore, numerical sensitivity analysis is carried to establish the relationship between parameters and the validity of the TLM, such as the initial perturbation, the prediction time, the time step size and so on, by the method… More >

  • Open Access

    ARTICLE

    Region-Aware Trace Signal Selection Using Machine Learning Technique for Silicon Validation and Debug

    R. Agalya1, R. Muthaiah2,*, D. Muralidharan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.1, pp. 25-43, 2019, DOI:10.32604/cmes.2019.05616

    Abstract In today’s modern design technology, post-silicon validation is an expensive and composite task. The major challenge involved in this method is that it has limited observability and controllability of internal signals. There will be an issue during execution how to address the useful set of signals and store it in the on-chip trace buffer. The existing approaches are restricted to particular debug set-up where all the components have equivalent prominence at all the time. Practically, the verification engineers will emphasis only on useful functional regions or components. Due to some constraints like clock gating, some of the regions can be… More >

  • Open Access

    ARTICLE

    TRISim: A Triage Simulation System to Exploit and Assess Triage Operations for Hospital Managers - Development, Validation and Experiment

    A. Koba yashi1, K. Suginuma2, M. Furui chi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.2, pp. 117-149, 2017, DOI:10.3970/cmes.2017.113.121

    Abstract Triage is a method for determining the priority of patients’ treatment to improve survival rates. Different triage methods are used in hospitals, and they are applied after performing an evaluation based on standard methods such as the Japan Triage Acuity Scale (JTAS) or Emergency Severity Index (ESI). It is important to consider the characteristics of all the hospitals when assigning triage methods and emergency levels to them; the hospital managers make these decisions. We propose a multi-agent simulation method to support the hospital managers in employing the triage protocols according to their environment. We developed a prototype simulation system called… More >

Displaying 61-70 on page 7 of 77. Per Page