Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Integrated Bioinformatics Analysis Identifies Vascular Endothelial Cell-Related Biomarkers for Hypertrophic Cardiomyopathy

    Ying Wang1, Weijun Zhang1, Fei Cai1, Yong Tao2,*

    Congenital Heart Disease, Vol.19, No.6, pp. 653-669, 2024, DOI:10.32604/chd.2025.060406 - 27 January 2025

    Abstract Background: Previous studies combined integrated scRNA-seq with bulk RNA data to screen biomarkers for cardiomyopathy. This study extended this approach to identify biomarkers specific for hypertrophic cardiomyopathy (HCM). Methods: Datasets GSE36961, GSE130036, GSE249925 and GSE203274 were analyzed in this study. ScRNA-seq analysis was employed to identify distinct cell populations. Differentially expression analysis was conducted to screen vascular endothelial cells (VECs)-related feature genes. After calculating VECs score, WGCNA was used to correlate gene modules with the VECs score. Key HCM biomarkers were determined using random forest analysis, and LASSO regression analyses to construct a diagnostic model… More >

  • Open Access

    ARTICLE

    Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells

    WEIXUE WANG#, TONGTONG WANG#, YAN ZHANG, TING DENG, HAIYANG ZHANG*, YI BA*

    Oncology Research, Vol.32, No.3, pp. 489-502, 2024, DOI:10.32604/or.2023.046676 - 06 February 2024

    Abstract Different from necrosis, apoptosis, autophagy and other forms of cell death, ferroptosis is a mechanism that catalyzes lipid peroxidation of polyunsaturated fatty acids under the action of iron divalent or lipoxygenase, leading to cell death. Apatinib is currently used in the third-line standard treatment of advanced gastric cancer, targeting the anti-angiogenesis pathway. However, Apatinib-mediated ferroptosis in vascular endothelial cells has not been reported yet. Tumor-secreted exosomes can be taken up into target cells to regulate tumor development, but the mechanism related to vascular endothelial cell ferroptosis has not yet been discovered. Here, we show that More >

  • Open Access

    ARTICLE

    Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells

    JING LI1,2, WANWAN FAN4, LILI HAO1, YONGSHENG LI5, GUOCHENG YU1, WEI SUN6, XIANQIONG LUO2,*, JINGXIANG ZHONG1,3,*

    BIOCELL, Vol.47, No.11, pp. 2485-2494, 2023, DOI:10.32604/biocell.2023.044177 - 27 November 2023

    Abstract Objective: This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes (hucMSC-Exos) in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A (VEGF-A) in immature human fetal retinal microvascular endothelial cells (hfRMECs). Methods: Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques, including transmission electron microscopy, nanoparticle tracking analysis, bicinchoninic acid assays, and western blotting. The hfRMECs were identified using von Willebrand factor (vWF) co-staining and divided into four groups: a control group cultured under normoxic condition, a hypoxic model group, a hypoxic… More > Graphic Abstract

    Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells

  • Open Access

    Anisodine hydrobromide alleviates oxidative stress caused by hypoxia/reoxygenation in human cerebral microvascular endothelial cells predominantly via inhibition of muscarinic acetylcholine receptor 4

    WENLI JIANG1,#, JUNYI SHEN1,#, XIAOQIANG DU1,#, YAN QIU1, JIAN ZHONG1, ZHI OUYANG1, BINGMEI M. FU2, YE ZENG1,*

    BIOCELL, Vol.47, No.10, pp. 2255-2263, 2023, DOI:10.32604/biocell.2023.030880 - 08 November 2023

    Abstract Background: Anisodine hydrobromide (AT3), an anti-cholinergic agent, could be delivered to the brain across the blood-brain barrier and has been used clinically for the treatment of cerebral ischemia/reperfusion injury. Endothelial dysfunction can be caused by hypoxia/reoxygenation (H/R) via oxidative stress and metabolic alterations. The present study investigated whether AT3 regulates the production of nitric oxide (NO) and reactive oxygen species (ROS), and the HIF-1α pathway via regulation of muscarinic acetylcholine receptors (mAChRs) in brain microvascular endothelial cells after H/R exposure. Methods: Under H/R conditions, hCMEC/D3 cerebral microvascular endothelial cells were treated with AT3. Specific inhibitors… More > Graphic Abstract

    Anisodine hydrobromide alleviates oxidative stress caused by hypoxia/reoxygenation in human cerebral microvascular endothelial cells predominantly via inhibition of muscarinic acetylcholine receptor 4

  • Open Access

    ARTICLE

    Tensorial Description of the Geometrical Arrangement of the Fibrous Molecules in Vascular Endothelial Cells

    Wei Huang*

    Molecular & Cellular Biomechanics, Vol.4, No.3, pp. 119-132, 2007, DOI:10.3970/mcb.2007.004.119

    Abstract This work presents a tensorial description of the geometrical arrangement of the cellular molecules in the vascular endothelial cells. The geometrical arrangement of the molecules is the foundation of the mechanical properties of the molecular aggregates, which are the foundation of the physical behavior of the cells and tissues. For better studying the physical behavior of the cells and tissues, the geometrical arrangement of the cellular molecules has to be described quantitatively. In this paper, a second order molecular configuration tensor Pijg for fibrous protein in the cells is defined for quantitative measurement. Here, the subscripts i,… More >

Displaying 1-10 on page 1 of 5. Per Page