Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (252)
  • Open Access

    ARTICLE

    Flexural-Torsional Buckling and Vibration Analysis of Composite Beams

    E.J. Sapountzakis1, G.C. Tsiatas2

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 103-116, 2007, DOI:10.3970/cmc.2007.006.103

    Abstract In this paper the general flexural-torsional buckling and vibration problems of composite Euler-Bernoulli beams of arbitrarily shaped cross section are solved using a boundary element method. The general character of the proposed method is verified from the formulation of all basic equations with respect to an arbitrary coordinate system, which is not restricted to the principal one. The composite beam consists of materials in contact each of which can surround a finite number of inclusions. It is subjected to a compressive centrally applied load together with arbitrarily transverse and/or torsional distributed or concentrated loading, while its edges are restrained by… More >

  • Open Access

    ARTICLE

    Fourier Analysis of Mode Shapes of Damaged Beams

    Kanchi Venkatesulu Reddy1, Ranjan Ganguli2

    CMC-Computers, Materials & Continua, Vol.5, No.2, pp. 79-98, 2007, DOI:10.3970/cmc.2007.005.079

    Abstract This paper investigates the effect of damage on beams with fixed boundary conditions using Fourier analysis of the mode shapes in spatial domain. A finite element model is used to obtain the mode shapes of a damaged fixed-fixed beam. Then the damaged beams are studied using a spatial Fourier analysis. This approach contrasts with the typical time domain application of Fourier analysis for vibration problems. It is found that damage causes considerable change in the Fourier coefficients of the mode shapes. The Fourier coefficients, especially the higher harmonics, are found to be sensitive to both damage size and location and… More >

  • Open Access

    ARTICLE

    Elastic Vibration Behaviors Oof Carbon Nanotubes Based on Micropolar Mechanics

    G. Q. Xie1,2, S. Y. Long1,3

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 11-20, 2006, DOI:10.3970/cmc.2006.004.011

    Abstract The concept of the micropolar theory is employed to investigate vibration behaviors of carbon nanotubes. The constitutive relation has been deduced from the two-dimensional analysis of the microstructure of the carbon nanotube. Van der Waals interactions are simulated by a weak spring model. Hamilton's principle is employed to obtain dynamics equations of the multi-walled carbon nanotube. Numerical examples for both single-walled and double-walled carbon nanotubes are presented and the significant difference in vibration behaviors between them has been distinguished. Numerical results show that fundamental frequencies for the cantilever single-walled carbon nanotube decreases with increase of the aspect ratio of them,… More >

  • Open Access

    ARTICLE

    The Method of Fundamental Solutions for Eigenfrequencies of Plate Vibrations

    D.L. Young1,2, C.C. Tsai3, Y.C. Lin1, C.S. Chen4

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 1-10, 2006, DOI:10.3970/cmc.2006.004.001

    Abstract This paper describes the method of fundamental solutions (MFS) to solve eigenfrequencies of plate vibrations by utilizing the direct determinant search method. The complex-valued kernels are used in the MFS in order to avoid the spurious eigenvalues. The benchmark problems of a circular plate with clamped, simply supported and free boundary conditions are studied analytically as well as numerically using the discrete and continuous versions of the MFS schemes to demonstrate the major results of the present paper. Namely only true eigenvalues are contained and no spurious eigenvalues are included in the range of direct determinant search method. Consequently analytical… More >

  • Open Access

    ARTICLE

    A Correlation Coefficient Approach for Evaluation of Stiffness Degradation of Beams Under Moving Load

    Thanh Q. Nguyen1,2, Thao T. D. Nguyen3, H. Nguyen-Xuan4,5,*, Nhi K. Ngo1,2

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 27-53, 2019, DOI:10.32604/cmc.2019.07756

    Abstract This paper presents a new approach using correlation and cross-correlation coefficients to evaluate the stiffness degradation of beams under moving load. The theoretical study of identifying defects by vibration methods showed that the traditional methods derived from the vibration measurement data have not met the needs of the actual issues. We show that the correlation coefficients allow us to evaluate the degree and the effectiveness of the defects on beams. At the same time, the cross-correlation model is the basis for determining the relative position of defects. The results of this study are experimentally conducted to confirm the relationship between… More >

  • Open Access

    ARTICLE

    The Interface Stress Field in the Elastic System Consisting of the Hollow Cylinder and Surrounding Elastic Medium Under 3D Non-axisymmetric Forced Vibration

    Surkay D. Akbarov1, 2, *, Mahir A. Mehdiyev3

    CMC-Computers, Materials & Continua, Vol.54, No.1, pp. 61-81, 2018, DOI:10.3970/cmc.2018.054.061

    Abstract The paper develops and employs analytical-numerical solution method for the study of the time-harmonic dynamic stress field in the system consisting of the hollow cylinder and surrounding elastic medium under the non-axisymmetric forced vibration of this system. It is assumed that in the interior of the hollow cylinder the point-located with respect to the cylinder axis, non-axisymmetric with respect to the circumferential direction and uniformly distributed time-harmonic forces act. Corresponding boundary value problem is solved by employing of the exponential Fourier transformation with respect to the axial coordinate and by employing of the Fourier series expansion of these transformations. Numerical… More >

  • Open Access

    ARTICLE

    Forced and Natural Vibrations of an Orthotropic Pre-Stressed Rectangular Plate with Neighboring Two Cylindrical Cavities

    U. Babuscu Yesil1

    CMC-Computers, Materials & Continua, Vol.53, No.1, pp. 1-22, 2017, DOI:10.3970/cmc.2017.053.001

    Abstract Forced and natural vibrations of a rectangular pre-stressed orthotropic composite plate containing two neighboring cylindrical cavities whose cross sections are rectangular with rounded-off corners are investigated numerically. It is assumed that all the end surfaces of the rectangular pre-stressed composite plate are simply supported and subjected to a uniformly distributed normal time-harmonic force on the upper face plane. The considered problem is formulated within the Three-Dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies (TDLTEWISB). The influence of mechanical and geometrical parameters as well as the initial stresses and the effect of cylindrical cavities on the dynamical characteristics of… More >

  • Open Access

    ARTICLE

    B-Spline Wavelet on Interval Finite Element Method for Static and Vibration Analysis of Stiffened Flexible Thin Plate

    Xing Wei1,2, Wen Chen2, Bin Chen2,3, Bin Chen1,4, Bin Chen2, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.52, No.1, pp. 53-71, 2016, DOI:10.3970/cmc.2016.052.053

    Abstract A new wavelet finite element method (WFEM) is constructed in this paper and two elements for bending and free vibration problems of a stiffened plate are analyzed. By means of generalized potential energy function and virtual work principle, the formulations of the bending and free vibration problems of the stiffened plate are derived separately. Then, the scaling functions of the B-spline wavelet on the interval (BSWI) are introduced to discrete the solving field variables instead of conventional polynomial interpolation. Finally, the corresponding two problems can be resolved following the traditional finite element frame. There are some advantages of the constructed… More >

  • Open Access

    ARTICLE

    Exact Solutions and Mode Transition for Out-of-Plane Vibrations of Nonuniform Beams with Variable Curvature

    Sen-Yung Lee1, Shueei-Muh Lin2,3, Kai-Ping Chang1

    CMC-Computers, Materials & Continua, Vol.51, No.1, pp. 1-19, 2016, DOI:10.3970/cmc.2016.051.001

    Abstract The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton's principle. These equations are expressed in terms of flexural and torsional displacements simultaneously. In this study, the analytical method is proposed. Firstly, two physical parameters are introduced to simplify the analysis. One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements. Based on the relation, the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms… More >

  • Open Access

    ARTICLE

    Study on Lateral Nonlinear Dynamic Response of Deepwater Drilling Riser with Consideration of The Vessel Motions in Its Installation

    Yanbin Wang1,2, Deli Gao1, Jun Fang1

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 57-75, 2015, DOI:10.3970/cmc.2015.048.057

    Abstract In this paper, the mechanical model to analyze the riser lateral vibration displacement and stress distribution in installation has been established via variational approach and the principle of minimum potential energy. In this model, the influence of vessel motion on riser lateral vibration has been taken into consideration. The specific expression of lateral vibration has also been figured out according to the boundary conditions and initial conditions. At last, the variations of riser maximum lateral displacement and stress distribution on water depth (WD), wave height, wave period, riser OD, BOPS weight have been discussed. More >

Displaying 231-240 on page 24 of 252. Per Page