Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    KPA-ViT: Key Part-Level Attention Vision Transformer for Foreign Body Classification on Coal Conveyor Belt

    Haoxuanye Ji*, Zhiliang Chen, Pengfei Jiang, Ziyue Wang, Ting Yu, Wei Zhang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071880 - 12 January 2026

    Abstract Foreign body classification on coal conveyor belts is a critical component of intelligent coal mining systems. Previous approaches have primarily utilized convolutional neural networks (CNNs) to effectively integrate spatial and semantic information. However, the performance of CNN-based methods remains limited in classification accuracy, primarily due to insufficient exploration of local image characteristics. Unlike CNNs, Vision Transformer (ViT) captures discriminative features by modeling relationships between local image patches. However, such methods typically require a large number of training samples to perform effectively. In the context of foreign body classification on coal conveyor belts, the limited availability… More >

  • Open Access

    ARTICLE

    Advancing Breast Cancer Molecular Subtyping: A Comparative Study of Convolutional Neural Networks and Vision Transformers on Mammograms

    Chee Chin Lim1,2,*, Hui Wen Tiu1, Qi Wei Oung1,3, Chiew Chea Lau4, Xiao Jian Tan2,5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070468 - 12 January 2026

    Abstract Breast cancer remains one of the leading causes of cancer mortality world-wide, with accurate molecular subtyping is critical for guiding treatment and improving patient outcomes. Traditional molecular subtyping via immuno-histochemistry (IHC) test is invasive, time-consuming, and may not fully represent tumor heterogeneity. This study proposes a non-invasive approach using digital mammography images and deep learning algorithm for classifying breast cancer molecular subtypes. Four pretrained models, including two Convolutional Neural Networks (MobileNet_V3_Large and VGG-16) and two Vision Transformers (ViT_B_16 and ViT_Base_Patch16_Clip_224) were fine-tuned to classify images into HER2-enriched, Luminal, Normal-like, and Triple Negative subtypes. Hyperparameter tuning,… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach Using Vision Transformer and U-Net for Flood Segmentation

    Cyreneo Dofitas1, Yong-Woon Kim2, Yung-Cheol Byun3,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069374 - 09 December 2025

    Abstract Recent advances in deep learning have significantly improved flood detection and segmentation from aerial and satellite imagery. However, conventional convolutional neural networks (CNNs) often struggle in complex flood scenarios involving reflections, occlusions, or indistinct boundaries due to limited contextual modeling. To address these challenges, we propose a hybrid flood segmentation framework that integrates a Vision Transformer (ViT) encoder with a U-Net decoder, enhanced by a novel Flood-Aware Refinement Block (FARB). The FARB module improves boundary delineation and suppresses noise by combining residual smoothing with spatial-channel attention mechanisms. We evaluate our model on a UAV-acquired flood More >

  • Open Access

    ARTICLE

    RetinexWT: Retinex-Based Low-Light Enhancement Method Combining Wavelet Transform

    Hongji Chen, Jianxun Zhang*, Tianze Yu, Yingzhu Zeng, Huan Zeng

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.067041 - 09 December 2025

    Abstract Low-light image enhancement aims to improve the visibility of severely degraded images captured under insufficient illumination, alleviating the adverse effects of illumination degradation on image quality. Traditional Retinex-based approaches, inspired by human visual perception of brightness and color, decompose an image into illumination and reflectance components to restore fine details. However, their limited capacity for handling noise and complex lighting conditions often leads to distortions and artifacts in the enhanced results, particularly under extreme low-light scenarios. Although deep learning methods built upon Retinex theory have recently advanced the field, most still suffer from insufficient interpretability… More >

  • Open Access

    REVIEW

    Deep Learning for Brain Tumor Segmentation and Classification: A Systematic Review of Methods and Trends

    Ameer Hamza, Robertas Damaševičius*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-41, 2026, DOI:10.32604/cmc.2025.069721 - 10 November 2025

    Abstract This systematic review aims to comprehensively examine and compare deep learning methods for brain tumor segmentation and classification using MRI and other imaging modalities, focusing on recent trends from 2022 to 2025. The primary objective is to evaluate methodological advancements, model performance, dataset usage, and existing challenges in developing clinically robust AI systems. We included peer-reviewed journal articles and high-impact conference papers published between 2022 and 2025, written in English, that proposed or evaluated deep learning methods for brain tumor segmentation and/or classification. Excluded were non-open-access publications, books, and non-English articles. A structured search was… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    HERL-ViT: A Hybrid Enhanced Vision Transformer Based on Regional-Local Attention for Malware Detection

    Boyan Cui1,2, Huijuan Wang1,*, Yongjun Qi1,*, Hongce Chen1, Quanbo Yuan1,3, Dongran Liu1, Xuehua Zhou1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5531-5553, 2025, DOI:10.32604/cmc.2025.070101 - 23 October 2025

    Abstract The proliferation of malware and the emergence of adversarial samples pose severe threats to global cybersecurity, demanding robust detection mechanisms. Traditional malware detection methods suffer from limited feature extraction capabilities, while existing Vision Transformer (ViT)-based approaches face high computational complexity due to global self-attention, hindering their efficiency in handling large-scale image data. To address these issues, this paper proposes a novel hybrid enhanced Vision Transformer architecture, HERL-ViT, tailored for malware detection. The detection framework involves five phases: malware image visualization, image segmentation with patch embedding, regional-local attention-based feature extraction, enhanced feature transformation, and classification. Methodologically,… More >

  • Open Access

    ARTICLE

    Explainable Transformer-Based Approach for Dental Disease Prediction

    Sari Masri, Ahmad Hasasneh*

    Computer Systems Science and Engineering, Vol.49, pp. 481-497, 2025, DOI:10.32604/csse.2025.068616 - 10 October 2025

    Abstract Diagnosing dental disorders using routine photographs can significantly reduce chair-side workload and expand access to care. However, most AI-based image analysis systems suffer from limited interpretability and are trained on class-imbalanced datasets. In this study, we developed a balanced, transformer-based pipeline to detect three common dental disorders: tooth discoloration, calculus, and hypodontia, from standard color images. After applying a color-standardized preprocessing pipeline and performing stratified data splitting, the proposed vision transformer model was fine-tuned and subsequently evaluated using standard classification benchmarks. The model achieved an impressive accuracy of 98.94%, with precision, recall and F1 scores More >

  • Open Access

    ARTICLE

    CMACF-Net: Cross-Multiscale Adaptive Collaborative and Fusion Grasp Detection Network

    Xi Li1,2, Runpu Nie1,*, Zhaoyong Fan2, Lianying Zou2, Zhenhua Xiao2, Kaile Dong1

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2959-2984, 2025, DOI:10.32604/cmc.2025.066740 - 23 September 2025

    Abstract With the rapid development of robotics, grasp prediction has become fundamental to achieving intelligent physical interactions. To enhance grasp detection accuracy in unstructured environments, we propose a novel Cross-Multiscale Adaptive Collaborative and Fusion Grasp Detection Network (CMACF-Net). Addressing the limitations of conventional methods in capturing multi-scale spatial features, CMACF-Net introduces the Quantized Multi-scale Global Attention Module (QMGAM), which enables precise multi-scale spatial calibration and adaptive spatial-channel interaction, ultimately yielding a more robust and discriminative feature representation. To reduce the degradation of local features and the loss of high-frequency information, the Cross-scale Context Integration Module (CCI) More >

  • Open Access

    ARTICLE

    Enhanced Plant Species Identification through Metadata Fusion and Vision Transformer Integration

    Hassan Javed1, Labiba Gillani Fahad1, Syed Fahad Tahir2,*, Mehdi Hassan2, Hani Alquhayz3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3981-3996, 2025, DOI:10.32604/cmc.2025.064359 - 23 September 2025

    Abstract Accurate plant species classification is essential for many applications, such as biodiversity conservation, ecological research, and sustainable agricultural practices. Traditional morphological classification methods are inherently slow, labour-intensive, and prone to inaccuracies, especially when distinguishing between species exhibiting visual similarities or high intra-species variability. To address these limitations and to overcome the constraints of image-only approaches, we introduce a novel Artificial Intelligence-driven framework. This approach integrates robust Vision Transformer (ViT) models for advanced visual analysis with a multi-modal data fusion strategy, incorporating contextual metadata such as precise environmental conditions, geographic location, and phenological traits. This combination… More >

Displaying 1-10 on page 1 of 47. Per Page