Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    REVIEW

    Efficient Application to Remove Arsenic and Antimony from the Water Environment Using Renewable Carbon-Based Materials: A Review

    Tongtong Wang1,#, Zhenhui Pan2,#, Di Zhang2, Hui Shi1,2,*, Murat Yılmaz3, Amit Kumar4, Gaurav Sharma4, Tao Liu2,*

    Journal of Renewable Materials, Vol.13, No.6, pp. 1103-1137, 2025, DOI:10.32604/jrm.2025.02024-0043 - 23 June 2025

    Abstract With the rapid development of industry, the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious. Therefore, it is urgent to solve the problem of arsenic and antimony pollution in the water environment. Renewable carbon-based materials, as a kind of adsorbent widely used in wastewater treatment, have been the focus of scholars’ research for many years. In this review, the preparation methods, characteristics, and applications of renewable carbon-based materials (biochar, activated carbon, carbon nanotubes, and graphene) for the removal of arsenic and antimony are described in detail. Based on adsorption kinetics,… More > Graphic Abstract

    Efficient Application to Remove Arsenic and Antimony from the Water Environment Using Renewable Carbon-Based Materials: A Review

  • Open Access

    REVIEW

    Progress in the Understanding and Modeling of Cavitation and Related Applications

    Jianying Li1,2,*, Donglai Li1,2, Tiefeng Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 445-470, 2025, DOI:10.32604/fdmp.2025.062337 - 01 April 2025

    Abstract Hydrodynamic cavitation, as an efficient technique applied in many physical and chemical treatment methods, has been widely used by various industries and in several technological fields. Relevant generators, designed with specific structures and parameters, can produce cavitation effects, thereby enabling effective treatment and reasonable transformation of substances. This paper reviews the design principles, performance, and practical applications associated with different types of cavitation generators, aiming to provide theoretical support for the optimization of these systems. It systematically analyzes the underpinning mechanisms and the various factors influencing the cavitation phenomena, also conducting a comparative analysis of More > Graphic Abstract

    Progress in the Understanding and Modeling of Cavitation and Related Applications

  • Open Access

    ARTICLE

    Harnessing the sunlight to degrade dye using polythiophene-based silver dopped ZnS composite

    A. Fatimaa, N. Nadeema, Bahaa Salehb, Z. A. Rehanc, S. Noreena, Hafiz T. Alib, M. Zahida,*

    Chalcogenide Letters, Vol.21, No.11, pp. 895-915, 2024, DOI:10.15251/CL.2024.2111.895

    Abstract The current research work investigated the photocatalytic degradation of dye using polythiophene-based silver-doped zinc sulfide (PT/Ag-ZnS). The ternary composite was synthesized by in-situ chemical oxidation polymerization approach and thoroughly characterized. Maximum photocatalytic activity depicted > 80% for Ag-ZnS and > 94% for PT/Ag-ZnS at pH 7 and 4 respectively at 10 mM oxidant and 30 mg/100 mL catalyst dose, 10 ppm IDC under 90 min. DMSO serves as an effective radical scavenger. The novel polymeric composite exhibits efficient reusability upto five cycles. Pseudo 1st -order kinetic model was best fitted for PT/Ag-ZnS. Toxicity analysis gave a More >

  • Open Access

    PROCEEDINGS

    Three-Dimensionally Printed Transition Metal Catalysts with Hierarchically Porous Structures for Wastewater Purification

    Sheng Guo1,2,*, Mengmeng Yang1, Yao Huang2, Xizi Gao1, Chao Cai3,*, Kun Zhou4,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012655

    Abstract 3D printing technology has demonstrated considerable potential in wastewater remediation. Zero-valent metal (ZVM) has been recognized as an efficient catalyst facilitating the organic pollutant degradation in water. However, owing to its inclination toward oxidation and aggregation, the practical utilization of ZVM remains a challenge. Herein, we have employed 3D printing techniques to fabricate hierarchically porous ZVM, such as zero-valent copper and zero-valent iron, which exhibit a high level of printing precision and commendable resistance to compression. These 3D-ZVM catalysts can effectively activate peroxymonosulfate (PMS), thereby degrading various organic pollutants, including tetracycline, ciprofloxacin, rhodamine B, and… More >

  • Open Access

    ARTICLE

    Effect of Tetramethylurea (TMU) on Polysulfone Membrane Performance for Atrazine-containing Wastewater Treatment

    NIKITA GUPTA, SARITA KALLA, Z.V.P. MURTHY*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 317-328, 2023, DOI:10.32381/JPM.2023.40.3-4.12

    Abstract Tetramethylurea (TMU) is a good solvent for organic substances and has received little attention as compared to other solvents. The TMU is a polar solution and is one of the molecules with an amphiphilic character. In the present work, an attempt has been made to use TMU as an additive in the preparation of nanofiltration membranes to improve the hydrophilicity of the membrane. The polysulfone membrane has been modified by incorporating different concentrations of TMU (0, 0.5, and 1 wt.%) in order to check the rejection of atrazine in water. This study aim is to More >

  • Open Access

    ARTICLE

    Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment

    Hajjar Hartini Wan Jusoh1, Nor Azman Kasan2,*, Hidayah Manan2, Nurfarahana Mohd Nasir1,3, Fareza Hanis Mohd Yunos1, Sofiah Hamzah1, Ahmad Jusoh1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2321-2332, 2023, DOI:10.32604/jrm.2023.026086 - 13 February 2023

    Abstract Implementation of biofloc technology (BFT) system in aquaculture industry shows high productivity, low feed conversion ratio, and an optimum culture environment. This study was divided into two phases. The first phase involved maintaining the water quality using the optimum carbon-to-nitrogen ratio by manipulating pH in culture water. The second phase examined the performance of harvesting biofloc (remaining phytoplankton and suspended solids in the system) using chicken eggshell powder (CESP). This study showed that pH 7 to 8 were the best biofloc performance with high removal percentage of ammonia (>99%) with a remaining ammonia concentration of… More > Graphic Abstract

    Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment

  • Open Access

    REVIEW

    Application of Fe-Based Amorphous Alloy in Industrial Wastewater Treatment: A Review

    Liefei Pei, Xiangyun Zhang, Zizhou Yuan*

    Journal of Renewable Materials, Vol.10, No.4, pp. 969-991, 2022, DOI:10.32604/jrm.2022.017617 - 02 November 2021

    Abstract Amorphous alloy (MGs) is a solid alloy with disordered atomic accumulation obtained by ultra-rapid solidification of alloy melt. The atom deviates from the equilibrium position and is in metastable state. Up to now, a large number of MGs have been applied to the treatment of dye and heavy metal contaminated wastewater and ideal experimental results have been obtained. However, there is no literature to systematically summarize the chemical reaction and degradation mechanism in the process of degradation. On the basis of reviewing the classification, application, and synthesis of MGs, this paper introduces in detail the… More >

  • Open Access

    ARTICLE

    Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment

    Xiaozheng Sun1,*, Yu Yang1, Qiang He2, Jianye Li1, Rui Li1, Haitao Chen1

    Journal of Renewable Materials, Vol.10, No.3, pp. 751-766, 2022, DOI:10.32604/jrm.2022.016933 - 28 September 2021

    Abstract The accumulation of Cu2+ in water is a potential threat to human health and environment. Dicarboxylic nanocellulose (DNC) with rich carboxyl groups was prepared through the NaIO4–NaClO2 sequential oxidation method to efficiently remove copper ions, and the Cu2+ adsorption properties and cost were studied. The maximum adsorption capacity reached 184.2 mg/g at pH 6 and an adsorbent dose of 5 g/L. Theoretically, the maximum adsorption capacities of monocarboxylic nanocellulose (MNC), DNC, and tricarboxylic nanocellulose (TNC) with carboxyl groups as the main adsorption sites were calculated to be 228.7, 261.3, and 148.1 mg/g, respectively. The Cu2+ adsorption costs of MNC, DNC, More > Graphic Abstract

    Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment

  • Open Access

    ARTICLE

    Removal of Cu(II), Pb(II), Mg(II), and Fe(II) by Adsorption onto Alginate/Nanocellulose Beads as Bio-Sorbent

    Ragab E. Abou-Zeid1, Korany A. Ali2, Ramadan M. A. Gawad2, Kholod H. Kamal3, Samir Kamel1, Ramzi Khiari4,5,6,*

    Journal of Renewable Materials, Vol.9, No.4, pp. 601-613, 2021, DOI:10.32604/jrm.2021.014005 - 01 February 2021

    Abstract

    Alginate blended with cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and tri-carboxylate cellulose nanofibers (TPC-CNF) prepared and encapsulated in the form of microcapsules (bio-polymeric beads). The cellulosic nanomaterials that used in this study were investigated as nanomaterials for wastewater treatment applications. Batch experiments were performed to study the removal of copper, lead, magnesium, and iron from aqueous solutions by the prepared beads. The effects of the sorbent dosage and the modified polymers on the removing efficiency of the metal cations were examined. Atomic absorption was used to measure the metal ions concentrations. The modified bio-polymeric beads

    More >

  • Open Access

    ARTICLE

    Biofilter efficiency of Eichhornia crassipes in wastewater treatment of fish farming in Amazonia

    Rubim MAL1, PR Isolino Sampaio1, P Parolin2,3

    Phyton-International Journal of Experimental Botany, Vol.84, No.1, pp. 244-251, 2015, DOI:10.32604/phyton.2015.84.244

    Abstract Fish is a very important part of the human diet in Amazonia. Near the growing cities, fish populations and individual size have decreased over the past decades. Alternatives to traditional and industrial fishing arise, including fish farming. Strategies to minimize the impact of fish farms on the environment are needed to have a regular and healthy fish supply. This is to avoid a reduction of biodiversity, a depletion of natural resources, and/or the induction of significant changes in the structure and functioning of adjacent ecosystems. Very little research has been performed on management of effluents… More >

Displaying 1-10 on page 1 of 10. Per Page