Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (565)
  • Open Access

    ARTICLE

    Vibration Analysis of Curved Shell using B-spline Wavelet on the Interval (BSWI) Finite Elements Method and General Shell Theory

    Zhibo Yang1, Xuefeng Chen2, Bing Li1, Zhengjia He1, Huihui Miao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 129-156, 2012, DOI:10.3970/cmes.2012.085.129

    Abstract The implementation of the B-spline Wavelet on the Interval (BSWI) for curved shell elements with rectangular planform is presented in this paper. By aid of the general shell theory, cylinder shells, doubly-curved shallow shells and hyperbolic paraboloidal shells BSWI elements are formulated. Instead of traditional polynomial interpolation, scaling functions at certain scale have been adopted to form the shape functions and construct wavelet-based elements. Because of the good character of BSWI scaling functions, the BSWI curved shell elements combine the accuracy of wavelet-based elements approximation and the character of B-spline functions for structural analysis. Different from the flat shell elements,… More >

  • Open Access

    ARTICLE

    Numerical Solutions of the Symmetric Regularized Long Wave Equation Using Radial Basis Functions

    Ayşe Gül Kaplan1, Yılmaz Dereli

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.5, pp. 423-438, 2012, DOI:10.3970/cmes.2012.084.423

    Abstract In this study, the nonlinear symmetric regularized long wave equation was solved numerically by using radial basis functions collocation method. The single solitary wave solution, the interaction of two positive solitary waves and the clash of two solitary waves were studied. Numerical results and simulations of the wave motions were presented. Validity and accuracy of the method was tested by compared with results in the literature. More >

  • Open Access

    ARTICLE

    Quantitative Identification of Multiple Cracks in a Rotor Utilizing Wavelet Finite Element Method

    Bing Li1,2, Hongbo Dong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.84, No.3, pp. 205-228, 2012, DOI:10.3970/cmes.2012.084.205

    Abstract Different from single crack identification method, the number of cracks should be firstly identified, and then the location and depth of each crack can be predicted for multiple cracks identification technology. This paper presents a multiple crack identification algorithm for rotor using wavelet finite element method. Firstly, the changes in natural frequency of a structure with various crack locations and depths are accurately obtained by means of wavelet finite element method; and then the damage coefficient method is used to determine the number and region of cracks. Finally, by finding the points of intersection of three frequency contour lines in… More >

  • Open Access

    ARTICLE

    The Mode Relation for Open Acoustic Waveguide Terminated by PML with Varied Sound Speed

    Jianxin Zhu, Zengsi Chen, Zheqi Shen

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 547-560, 2012, DOI:10.3970/cmes.2012.083.547

    Abstract An acoustic waveguide with continuously varying sound speed is discussed in this paper. When the waveguide is open along the depth, the perfectly matched layer (PML) is used to terminate the infinite domain. Since the sound speed is gradually varied, the density is assumed as constant in each fluid layer. For this waveguide, it is shown that the mode relation is derived by using the differential transfer matrix method (DTMM). To solve leaky and PML modes, Newton's iteration is applied, and Chebyshev pseudospectral method is used for obtaining initial guesses. The solutions are with high accuracy. More >

  • Open Access

    ARTICLE

    A Hybrid of Interval Wavelets and Wavelet Finite Element Model for Damage Detection in Structures

    Jiawei Xiang1, Toshiro Matsumoto2, Yanxue Wang3, Zhansi Jiang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.3&4, pp. 269-294, 2011, DOI:10.3970/cmes.2011.081.269

    Abstract Damages occurred in a structure will lead to changes in modal parameters (natural frequencies and modal shapes). The relationship between modal parameters and damage parameters (locations and depths) is very complicated. Single detection method using natural frequencies or modal shapes can not obtain robust damage detection results from the inevitably noise-contaminated modal parameters. To eliminate the complexity, a hybrid approach using both of wavelets on the interval (interval wavelets) method and wavelet finite element model-based method is proposed to detect damage locations and depths. To avoid the boundary distortion phenomenon, Interval wavelets are employed to analyze the finite-length modal shape… More >

  • Open Access

    ARTICLE

    Unified Dispersion Characteristics of Structural Acoustic Waveguides

    Abhijit Sarkar1, M. V. Kunte2, Venkata R. Sonti2

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.3&4, pp. 249-268, 2011, DOI:10.3970/cmes.2011.081.249

    Abstract In this article, we show with some formalism that infinite flexible structural acoustic waveguides have a general form for the dispersion equation. The dispersion equation of all such waveguides should conform to a generic form. This allows us to bring out the common features of structural acoustic waveguides. We take three examples to demonstrate this fact, namely, the rectangular, the circular cylindrical and the elliptical geometries. Where necessary, the equations are simplified for applicability to a particular frequency-regime before demonstrating the conformance to the generic form of the dispersion relation. It is then shown that the coupled wavenumber solutions of… More >

  • Open Access

    ARTICLE

    Coupled Wavenumbers in an Infinite Flexible Fluid-Filled Circular Cylindrical Shell : Comparison between Different Shell Theories

    M. V. Kunte1, Venkata R. Sonti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.81, No.2, pp. 119-156, 2011, DOI:10.3970/cmes.2011.081.119

    Abstract Analytical expressions are found for the wavenumbers in an infinite flexible in vacuo / fluid-filled circular cylindrical shell based on different shell-theories using asymptotic methods. Donnell-Mushtari theory (the simplest shell theory) and four higher order theories, namely Love-Timoshenko, Goldenveizer-Novozhilov, Flügge and Kennard-simplified are considered. Initially, in vacuo and fluid-coupled wavenumber expressions are presented using the Donnell-Mushtari theory. Subsequently, the wavenumbers using the higher order theories are presented as perturbations on the Donnell-Mushtari wavenumbers. Similarly, expressions for the resonance frequencies in a finite shell are also presented, using each shell theory. The basic differences between the theories being what they are,… More >

  • Open Access

    ARTICLE

    A Stabilized Finite Element Formulation for Continuum Models of Traffic Flow

    Durgesh Vikram1, Sanjay Mittal2, Partha Chakroborty1

    CMES-Computer Modeling in Engineering & Sciences, Vol.79, No.3&4, pp. 237-260, 2011, DOI:10.3970/cmes.2011.079.237

    Abstract A stabilized finite element formulation is presented to solve the governing equations for traffic flow. The flow is assumed to be one-dimensional. Both, PW-type (Payne-Whitham) 2-equation models and the LWR-type (Lighthill-Whitham-Richards) 1-equation models are considered. The SUPG (Streamline-Upwind/Petrov-Galerkin) and shock capturing stabilizations are utilized. These stabilizations are sufficient for the 1-equation models. However, an additional stabilization is necessary for the 2-equation models. For the first time, such a stabilization is proposed. It arises from the coupling between the two equations and is termed as IEPG (Inter-Equation/Petrov-Galerkin) stabilization. Two behavioral models are studied: Greenshields' (GS) and Greenberg's (GB) models. Numerical tests… More >

  • Open Access

    ARTICLE

    Wave Propagation in Unsaturated Poroelastic Media: Boundary Integral Formulation and Three-dimensional Fundamental Solution

    P. Maghoul1, B. Gatmiri1,2, D. Duhamel1

    CMES-Computer Modeling in Engineering & Sciences, Vol.78, No.1, pp. 51-76, 2011, DOI:10.3970/cmes.2011.078.051

    Abstract This paper aims at obtaining boundary integral formulations as well as three dimensional(3D) fundamental solutions for unsaturated soils under dynamic loadings for the first time. The boundary integral equations are derived via the use of the weighted residuals method in a way that permits an easy discretization and implementation in a Boundary Element code. Also, the associated 3D fundamental solutions for such deformable porous medium are derived in Laplace transform domain using the method of Hérmander. The derived results are verified analytically by comparison with the previously introduced corresponding fundamental solutions in elastodynamic limiting case. These solutions can be used,… More >

  • Open Access

    ARTICLE

    A Wavelet Numerical Method for Solving Nonlinear Fractional Vibration, Diffusion and Wave Equations

    Zhou YH1,2, Wang XM2, Wang JZ1,2 , Liu XJ2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 137-160, 2011, DOI:10.3970/cmes.2011.077.137

    Abstract In this paper, we present an efficient wavelet-based algorithm for solving a class of fractional vibration, diffusion and wave equations with strong nonlinearities. For this purpose, we first suggest a wavelet approximation for a function defined on a bounded interval, in which expansion coefficients are just the function samplings at each nodal point. As the fractional differential equations containing strong nonlinear terms and singular integral kernels, we then use Laplace transform to convert them into the second type Voltera integral equations with non-singular kernels. Certain property of the integral kernel and the ability of explicit wavelet approximation to the nonlinear… More >

Displaying 441-450 on page 45 of 565. Per Page