Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (661)
  • Open Access

    ARTICLE

    MewCDNet: A Wavelet-Based Multi-Scale Interaction Network for Efficient Remote Sensing Building Change Detection

    Jia Liu1, Hao Chen1, Hang Gu1, Yushan Pan2,3, Haoran Chen1, Erlin Tian4, Min Huang4, Zuhe Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068162 - 10 November 2025

    Abstract Accurate and efficient detection of building changes in remote sensing imagery is crucial for urban planning, disaster emergency response, and resource management. However, existing methods face challenges such as spectral similarity between buildings and backgrounds, sensor variations, and insufficient computational efficiency. To address these challenges, this paper proposes a novel Multi-scale Efficient Wavelet-based Change Detection Network (MewCDNet), which integrates the advantages of Convolutional Neural Networks and Transformers, balances computational costs, and achieves high-performance building change detection. The network employs EfficientNet-B4 as the backbone for hierarchical feature extraction, integrates multi-level feature maps through a multi-scale fusion… More >

  • Open Access

    ARTICLE

    Power Balance Control Strategy of Cascaded H-Bridge Multilevel Inverter Based on Improved Harmonic Injection

    Feng Zhao, Haonan Xu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.122, No.12, pp. 4987-5000, 2025, DOI:10.32604/ee.2025.068714 - 27 November 2025

    Abstract The cascaded H-bridge (CHB) multilevel inverter has become one of the most widely used PV inverter topologies due to its high voltage processing capability and high quality output power. Grid-connected PV system due to external conditions such as PV panel shading, PV component damage, can lead to PV output power imbalance, triggering the system over-modulation phenomenon, which in turn leads to grid-connected current waveform distortion. To this end, an improved power balance control strategy is proposed in this paper. Firstly, according to the different modulation ratios of each H-bridge module, a suitable harmonic injection method More >

  • Open Access

    ARTICLE

    Numerical Modelling of Oblique Wave Interaction with Dual Curved-LEG Pontoon Floating Breakwaters

    Jothika Palanisamy1, Chandru Muthusamy1,*, Higinio Ramos2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2017-2038, 2025, DOI:10.32604/cmes.2025.071958 - 26 November 2025

    Abstract This study investigates the performance of dual curved-leg pontoon floating breakwaters in finite water depth under the assumption of linear wave theory. The analysis is carried out for four different models of curved-leg geometries, which are combinations of convex and concave shapes. The models are classified as follows. Model-1: Seaside and leeside face concave, Model-2: Seaside and leeside face convex, Model-3: Seaside face convex and leeside face concave, and Model-4: Seaside face concave and leeside face convex. The Boundary Element Method is utilized in order to find a solution to the associated boundary value problem.… More >

  • Open Access

    ARTICLE

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

    Lailan Ni`mah1,*, Sri Rachmania Juliastuti2, Mahfud Mahfud2

    Journal of Renewable Materials, Vol.13, No.11, pp. 2169-2190, 2025, DOI:10.32604/jrm.2025.02025-0044 - 24 November 2025

    Abstract This study evaluates the effectiveness of microwave technology in producing activated carbon from lemongrass waste, an underutilized agricultural byproduct. Microwave-assisted production offers faster heating, lower energy consumption, and better process control compared to conventional methods. It also enhances pore development, resulting in larger, cleaner, and more uniform pores, making the activated carbon more effective for adsorption. The microwave-assisted process significantly accelerates production, reducing the required time to just 10 min at a power of 400 W. Activated carbon derived from lemongrass waste at 400 W exhibits a water absorption capacity of 7.88%, ash content of… More > Graphic Abstract

    Microwave-Assisted Synthesis, Characterization, and Performance Assessment of Lemongrass-Derived Activated Carbon for Removal of Fe and Mn from Acid Mine Drainage

  • Open Access

    ARTICLE

    Wavelet Transform-Based Bayesian Inference Learning with Conditional Variational Autoencoder for Mitigating Injection Attack in 6G Edge Network

    Binu Sudhakaran Pillai1, Raghavendra Kulkarni2, Venkata Satya Suresh kumar Kondeti2, Surendran Rajendran3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1141-1166, 2025, DOI:10.32604/cmes.2025.070348 - 30 October 2025

    Abstract Future 6G communications will open up opportunities for innovative applications, including Cyber-Physical Systems, edge computing, supporting Industry 5.0, and digital agriculture. While automation is creating efficiencies, it can also create new cyber threats, such as vulnerabilities in trust and malicious node injection. Denial-of-Service (DoS) attacks can stop many forms of operations by overwhelming networks and systems with data noise. Current anomaly detection methods require extensive software changes and only detect static threats. Data collection is important for being accurate, but it is often a slow, tedious, and sometimes inefficient process. This paper proposes a new… More >

  • Open Access

    ARTICLE

    Colored Tubes and Chlorella Vulgaris Bioinput Improve Growth and Quality of Hancornia speciosa Seedlings

    Giovana Pinheiro Viana da Silva1, Edilson Costa1,*, Paulo Henrique Rosa Melo1, Fernanda Pacheco de Almeida Prado Bortolheiro1, Thaise Dantas2, Flávio Ferreira da Silva Binotti1, Carlos Eduardo da Silva Oliveira1, Abimael Gomes da Silva1

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 3109-3123, 2025, DOI:10.32604/phyton.2025.070221 - 29 October 2025

    Abstract Hancornia speciosa ‘Gomes’, commonly known as mangabeira, is a fruit-bearing tree native to Brazil that plays a crucial role in sustaining its native biome, restoring degraded areas, and improving the socio-environmental conditions of these regions. The use of colored materials and bioinputs can help improve the quality of seedling production of Hancornia speciosa. This study aimed to evaluate the use of colored seedling tubes and a Chlorella vulgaris-based bioinput in developing Hancornia speciosa seedlings. The experiment was conducted at the Mato Grosso do Sul State University (UEMS), in Cassilândia, MS, using a completely randomized design in a 5 ×… More >

  • Open Access

    ARTICLE

    An Efficient CSP-PDW Approach for ECG Signal Compression and Reconstruction for IoT-Based Healthcare

    Hari Mohan Rai1,#, Chandra Mukherjee2,#, Joon Yoo1, Hanaa A. Abdallah3, Saurabh Agarwal4,*, Wooguil Pak4,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5723-5745, 2025, DOI:10.32604/cmc.2025.070391 - 23 October 2025

    Abstract A hybrid Compressed Sensing and Primal-Dual Wavelet (CSP-PDW) technique is proposed for the compression and reconstruction of ECG signals. The compression and reconstruction algorithms are implemented using four key concepts: Sparsifying Basis, Restricted Isometry Principle, Gaussian Random Matrix, and Convex Minimization. In addition to the conventional compression sensing reconstruction approach, wavelet-based processing is employed to enhance reconstruction efficiency. A mathematical model of the proposed algorithm is derived analytically to obtain the essential parameters of compression sensing, including the sparsifying basis, measurement matrix size, and number of iterations required for reconstructing the original signal and determining More >

  • Open Access

    ARTICLE

    Image Enhancement Combined with LLM Collaboration for Low-Contrast Image Character Recognition

    Qin Qin1, Xuan Jiang1,*, Jinhua Jiang1, Dongfang Zhao1, Zimei Tu1, Zhiwei Shen2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4849-4867, 2025, DOI:10.32604/cmc.2025.067919 - 23 October 2025

    Abstract The effectiveness of industrial character recognition on cast steel is often compromised by factors such as corrosion, surface defects, and low contrast, which hinder the extraction of reliable visual information. The problem is further compounded by the scarcity of large-scale annotated datasets and complex noise patterns in real-world factory environments. This makes conventional OCR techniques and standard deep learning models unreliable. To address these limitations, this study proposes a unified framework that integrates adaptive image preprocessing with collaborative reasoning among LLMs. A Biorthogonal 4.4 (bior4.4) wavelet transform is adaptively tuned using DE to enhance character… More >

  • Open Access

    EDITORIAL

    Artificial Intelligence-Driven Advanced Wave Energy Planning and Control: Framework, Challenges and Perspectives

    Bo Yang1,*, Guo Zhou1, Shuai Zhou2, Yaxing Ren3

    Energy Engineering, Vol.122, No.10, pp. 3905-3915, 2025, DOI:10.32604/ee.2025.069600 - 30 September 2025

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Research on Wave Energy Harvesting Technology Using a Hybrid Triboelectric Nanogenerator and Electromagnetic Generator

    Jingying Zou1,#, Wenzhou Liu1,#, Yaoxuan Han2, Chenxi Wang3, Chao Dong4, Youbo Jia5,*

    Energy Engineering, Vol.122, No.10, pp. 4081-4097, 2025, DOI:10.32604/ee.2025.067544 - 30 September 2025

    Abstract The ocean, as one of Earth’s largest natural resources, covers over 70% of the planet’s surface and holds vast water energy potential. Building on this context, this study designs a hybrid generator (WWR-TENG) that integrates a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). TENG is a new technology that can capture mechanical energy from the environment and convert it into electrical energy, and is particularly suitable for common natural or man-made power sources such as human movement, wind power, and water flow. EMG is a device that converts mechanical energy into electrical energy through… More >

Displaying 1-10 on page 1 of 661. Per Page