Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (77)
  • Open Access

    ARTICLE

    Construction of an Edge Finite Element Space and a Contribution to the Mesh Selection in the Approximation of the Second Order Time Harmonic Maxwell System

    J. E. Sebold1, L. A. Lacerda2, J. A. M. Carrer3

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.2, pp. 111-137, 2014, DOI:10.3970/cmes.2014.103.111

    Abstract This work is concerned with the development of the so-called Whitney and Nédélec edge finite element method for the solution of the time-harmonic Maxwell equations. Initially, the second order time harmonic Maxwell systems, as well as their variational formulation, are presented. In the sequence, Whitney and Nédélec element spaces, whose functions present continuous tangential components along the interface are built of adjacent elements. Then, numerical experiments validate the performance of Whitney and Nédélec first order elements in a two-dimensional domain. The discrete dispersion relation for the elements shows that the numerical phase velocity can be More >

  • Open Access

    ARTICLE

    Wave Propagation in Piezoelectric Rods with Rectangular Cross Sections

    Xiaoming Zhang1, Xingxin Xu1,2, Yuqing Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.1, pp. 1-17, 2014, DOI:10.3970/cmes.2014.100.001

    Abstract Orthogonal polynomial approach has been used to deal with the wave propagation in structures that have finite dimension in only one direction, such as horizontally infinite flat plates, axially infinite hollow cylinders. In order to solve wave propagation in two-dimensional piezoelectric rod with rectangular cross section, i.e. the piezoelectric plate with finite dimensions in two directions, an extended orthogonal polynomial approach is proposed in this paper. For validation and illustration purposes, the proposed approach is applied to solving the wave propagation in a square steel rod. The results obtained are in good agreement with the More >

  • Open Access

    ARTICLE

    Wave Propagation in Functionally Graded Piezoelectric-piezomagnetic Rectangular Rings

    Yuchun Duan1, Xiaoming Zhang2,3, Yuqing Wang2, Jiangong Yu2

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 153-174, 2014, DOI:10.3970/cmc.2014.043.153

    Abstract The ring ultrasonic transducers are widely used in the ocean engineering and medical fields. This paper proposes a double orthogonal polynomial series approach to solve the wave propagation problem in a functionally graded piezoelectric-piezomagnetic (FGPP) ring with a rectangular cross-section. Through numerical comparison with the available reference results for a pure elastic homogeneous rectangular bar, the validity of the proposed approach is illustrated. The dispersion curves and displacement distributions of various FGPP rectangular bars are calculated to reveal their wave characteristics. The results can be used for the design and optimization of the ring FGPP More >

  • Open Access

    ARTICLE

    On Axisymmetric Longitudinal Wave Propagation in Double-Walled Carbon Nanotubes

    S.D. Akbarov1,2

    CMC-Computers, Materials & Continua, Vol.33, No.1, pp. 63-85, 2013, DOI:10.3970/cmc.2013.033.063

    Abstract An attempt is made into the investigation of longitudinal axisymmetric wave propagation in the DWCNT with the use of the exact equations of motion of the linear theory of elastodynamics. The DWCNT is modeled as concentricallynested two circular hollow cylinders between which there is free space. The difference in the radial displacements of these cylinders is coupled with the van der Waals forces and it is assumed that full slipping conditions occur on the inner surface of the outer tube and on the outer surface of the inner tube. Numerical results on the influence of More >

  • Open Access

    ARTICLE

    Iterative coupling between the TBEM and the MFS Part II - Elastic wave propagation

    Julieta António1, António Tadeu1,2, Patrícia Ferreira3

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.5, pp. 337-354, 2013, DOI:10.3970/cmes.2013.091.337

    Abstract The first of these two companion papers addressed the iterative coupling between a formulation based on the normal derivative of the integral equation (TBEM) and the method of fundamental solutions (MFS), which was used to solve scattering problems involving the propagation of acoustic waves in the vicinity of multiple thin barriers and domes. This second part extends these results to the more complicated case of in-plane wave propagation and presents their application to scattering problems involving SV-P waves. The formulation is first presented and verified by computing the number of iterations required and measuring the More >

  • Open Access

    ARTICLE

    Two-dimensional elastic wave propagation analysis in finite length FG thick hollow cylinders with 2D nonlinear grading patterns using MLPG method

    S.M. Moussavinezhad1, Farzad Shahabian1, Seyed Mahmoud Hosseini2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.3, pp. 177-204, 2013, DOI:10.3970/cmes.2013.091.177

    Abstract In this article, the propagation of elastic wave is studied in two dimensional functionally graded thick hollow cylinder with finite length subjected to mechanical shock loading, considering two dimensional variations for mechanical properties. The meshless local Petrov-Galerkin (MLPG) method is developed to solve the boundary value problem. The Newmark finite difference method is used to treat the time dependence of the variables for transient problems. The FG cylinder is considered to be under axisymmetric conditions. The mechanical properties of FG cylinder are assumed to vary across thickness and length of FG cylinder in terms of… More >

  • Open Access

    ARTICLE

    Iterative Coupling Between the TBEM and the MFS Part I - AcousticWave Propagation

    António Tadeu1,2, Julieta António1, Patrícia Ferreira3

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.3, pp. 153-176, 2013, DOI:10.3970/cmes.2013.091.153

    Abstract This paper presents an iterative coupling between a formulation based on the normal derivative of the integral equation (TBEM) and the method of fundamental solutions (MFS) for the transient analysis of acoustic wave propagation problems in the presence of multiple inclusions. The proposed formulation overcomes the individual limitations of each method, requires less computer memory and may use less CPU time than a full direct coupling formulation scheme. In the proposed formulation each inclusion is solved individually, successively, using the TBEM or the MFS and scatters a field that it is seen as an incident… More >

  • Open Access

    ARTICLE

    The Influence of Third Order Elastic Constants on Axisymmetric Wave Propagation Velocity in the Two-Layered Pre-Stressed Hollow Cylinder

    S.D. Akbarov1,2

    CMC-Computers, Materials & Continua, Vol.32, No.1, pp. 29-60, 2012, DOI:10.3970/cmc.2012.032.029

    Abstract By the use of the Murnaghan potential the influence of third order elastic constants on axisymmetric longitudinal wave propagation velocity in a pre-stressed two-layered circular hollow cylinder is investigated. This investigation is carried out within the scope of the piecewise homogeneous body model by utilizing the first version of the small initial deformation theory of the Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies. Numerical results are obtained and analyzed for the cases where the material of the outer hollow cylinder material is aluminum, but the material of the inner cylinder is steel More >

  • Open Access

    ARTICLE

    Transient Wave Propagation in a Functionally Graded Slab and Multilayered Medium Subjected to Dynamic Loadings

    Chien-Ching Ma1,2, Yi-Hsien Lin2, Shih-Hao Lin2

    CMC-Computers, Materials & Continua, Vol.31, No.1, pp. 37-64, 2012, DOI:10.3970/cmc.2012.031.037

    Abstract In this article, the transient response in a functionally graded material (FGM) slab is analyzed by Laplace transform technique. The numerical Laplace inversion (Durbin's formula) is used to calculate the dynamic behavior of the FGM slab. The slab is subjected an uniform loading at the upper surface, and the lower surface are assumed to be traction-free or fixed conditions. The analytical solutions are presented in the transform domain and the numerical Laplace inversion is performed to obtain the transient response in time domain. To take the accuracy and computational efficiency in consideration, Durbin's method is More >

  • Open Access

    ARTICLE

    A Local Adaptive Differential Quadrature Method for Multi-Dimensional Inverse Scattering Problem of Wave Propagation

    Jiun-Yu Wu1,2, Hui-Ching Wang1, Ming-I Char1, Bo-Chen Tai1

    CMC-Computers, Materials & Continua, Vol.28, No.3, pp. 261-280, 2012, DOI:10.3970/cmc.2012.028.261

    Abstract In this paper, we use the Local adaptive differential quadrature method (La-DQM) to solve multi-dimensional inverse scattering problem (ISP) of wave propagation. The La-DQM uses fictitious points to tackle the high-order differential equations with multi-boundary conditions and numerical results can be obtain directly in the calculation process. Six examples show the effectiveness and accuracy of the La-DQM in providing excellent estimates of unknown wave propagation from the given data. We think that the scheme is applicable to the ISP of wave propagation. Numerical results show that the La-DQM is powerful method for solving the inverse More >

Displaying 21-30 on page 3 of 77. Per Page