Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (163)
  • Open Access

    ARTICLE

    Numerical Solutions of Fractional System of Partial Differential Equations By Haar Wavelets

    F. Bulut1,2, Ö. Oruç3, A. Esen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.108, No.4, pp. 263-284, 2015, DOI:10.3970/cmes.2015.108.263

    Abstract In this paper, time fractional one dimensional coupled KdV and coupled modified KdV equations are solved numerically by Haar wavelet method. Proposed method is new in the sense that it doesn’t use fractional order Haar operational matrices. In the proposed method L1 discretization formula is used for time discretization where fractional derivatives are Caputo derivative and spatial discretization is made by Haar wavelets. L2 and L error norms for various initial and boundary conditions are used for testing accuracy of the proposed method when exact solutions are known. Numerical results which produced by the proposed method for the problems under… More >

  • Open Access

    ARTICLE

    A High-Order Accurate Wavelet Method for Solving Three-Dimensional Poisson Problems

    Xiaojing Liu1,2, Jizeng Wang1, Youhe Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.6, pp. 433-446, 2015, DOI:10.3970/cmes.2015.107.433

    Abstract Based on the approximation scheme for a L2-function defined on a three-dimensional bounded space by combining techniques of boundary extension and Coiflet-type wavelet expansion, a modified wavelet Galerkin method is proposed for solving three-dimensional Poisson problems with various boundary conditions. Such a wavelet-based solution procedure has been justified by solving five test examples. Numerical results demonstrate that the present wavelet method has an excellent numerical accuracy, a fast convergence rate, and a very good capability in handling complex boundary conditions. More >

  • Open Access

    ARTICLE

    A Finite Wavelet Domain Method for the Rapid Analysis of Transient Dynamic Response in Rods and Beams

    C.V. Nastos, T.C. Theodosiou, C.S. Rekatsinas, D.A. Saravanos1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.5, pp. 379-409, 2015, DOI:10.3970/cmes.2015.107.379

    Abstract A computationally efficient numerical method is developed for the prediction of transient response in orthotropic rod and beam structures. The method takes advantage of the outstanding properties of compactly supported Daubechies wavelet scaling functions for the spatial approximation of displacements in a finite domain of the structure, hence is termed Finite Wavelet Domain (FWD) method. The basic principles and advantages of the method are presented and the discretization of the equations of motion is formulated for one-dimensional structures. Numerical results for the simulation of propagating guided waves in rods and strips are presented and compared against traditional finite elements. More >

  • Open Access

    ARTICLE

    New Spectral Solutions of Multi-Term Fractional-Order Initial Value ProblemsWith Error Analysis

    W. M. Abd- Elhameed1,2, Y. H. Youssri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.5, pp. 375-398, 2015, DOI:10.3970/cmes.2015.105.375

    Abstract In this paper, a new spectral algorithm for solving linear and nonlinear fractional-order initial value problems is established. The key idea for obtaining the suggested spectral numerical solutions for these equations is actually based on utilizing the ultraspherical wavelets along with applying the collocation method to reduce the fractional differential equation with its initial conditions into a system of linear or nonlinear algebraic equations in the unknown expansion coefficients. The convergence and error analysis of the suggested ultraspherical wavelets expansion are carefully discussed. For the sake of testing the proposed algorithm, some numerical examples are considered. The numerical results indicate… More >

  • Open Access

    ARTICLE

    Research on Band Structure of One-dimensional Phononic Crystals Based on Wavelet Finite Element Method

    Mao Liu1,2, Jiawei Xiang1, Haifeng Gao1, Yongying Jiang1, Yuqing Zhou1, Fengping Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.5, pp. 425-436, 2014, DOI:10.3970/cmes.2014.097.425

    Abstract A wavelet finite element method (WFEM) is developed to analyze the dispersion relation for one-dimensional phononic crystals (1DPCs). In order to calculate the band gaps (BGs) of 1DPCs, the wavelet finite element model is constructed using a slender beam element based on B-spline wavelet on the interval (BSWI). Combining with the Bloch-Floquet theorem and ω(k) technique, the model will be simplified as a simple eigenproblem. The performance of the proposed method has been numerically verified by one numerical example. More >

  • Open Access

    ARTICLE

    Numerical Solution for a Class of Linear System of Fractional Differential Equations by the Haar Wavelet Method and the Convergence Analysis

    Yiming Chen1, Xiaoning Han1, Lechun Liu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.5, pp. 391-405, 2014, DOI:10.3970/cmes.2014.097.391

    Abstract In this paper, a class of linear system of fractional differential equations is considered. It has been solved by operational matrix of Haar wavelet method which converts the problem into algebraic equations. Moreover the convergence of the method is studied, and three numerical examples are provided to demonstrate the accuracy and efficiency. More >

  • Open Access

    ARTICLE

    An Approach with HaarWavelet Collocation Method for Numerical Simulations of Modified KdV and Modified Burgers Equations

    S. Saha Ray1, A. K. Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.103, No.5, pp. 315-341, 2014, DOI:10.3970/cmes.2014.103.315

    Abstract In this paper, an efficient numerical schemes based on the Haar wavelet method are applied for finding numerical solution of nonlinear third-order modified Korteweg-de Vries (mKdV) equation as well as modified Burgers' equations. The numerical results are then compared with the exact solutions. The accuracy of the obtained solutions is quite high even if the number of calculation points is small. More >

  • Open Access

    ARTICLE

    A Wavelet Method for Solving Bagley-Torvik Equation

    Xiaomin Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.2, pp. 169-182, 2014, DOI:10.3970/cmes.2014.102.169

    Abstract In this paper, an efficient and robust wavelet Laplace inversion method of solving the fractional differential equations is proposed. Such an inverse function can be applied to any reasonable function categories and it is not necessary to know the properties of original function in advance. As an example, we have applied the proposed method to the solution of the Bagley–Torvik equations and Numerical examples are given to demonstrate the efficiency and accuracy of the proposed. More >

  • Open Access

    ARTICLE

    A Wavelet Method for the Solution of Nonlinear Integral Equations with Singular Kernels

    Jizeng Wang1,2, Lei Zhang1, Youhe Zhou1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.2, pp. 127-148, 2014, DOI:10.3970/cmes.2014.102.127

    Abstract In this paper, we propose an efficient wavelet method for numerical solution of nonlinear integral equations with singular kernels. The proposed method is established based on a function approximation algorithm in terms of Coiflet scaling expansion and a special treatment of boundary extension. The adopted Coiflet bases in this algorithm allow each expansion coefficient being explicitly expressed by a single-point sampling of the function, which is crucially important for dealing with nonlinear terms in the equations. In addition, we use the technique of integration by parts to transform the original integral equations with non-smooth or singular kernels into regular ones… More >

  • Open Access

    ARTICLE

    Static, Free Vibration and Buckling Analysis of Functionally Graded Beam via B-spline Wavelet on the Interval and Timoshenko Beam Theory

    Hao Zuo1,2, Zhi-Bo Yang1,2,3, Xue-Feng Chen1,2, Yong Xie4, Xing-Wu Zhang1,2, Yue Liu5

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.6, pp. 477-506, 2014, DOI:10.3970/cmes.2014.100.477

    Abstract The application of B-spline wavelet on the interval (BSWI) finite element method for static, free vibration and buckling analysis in functionally graded (FG) beam is presented in this paper. The functionally graded material (FGM) is a new type of heterogeneous composite material with material properties varying continuously throughout the thickness direction according to power law form in terms of volume fraction of material constituents. Different from polynomial interpolation used in traditional finite element method, the scaling functions of BSWI are employed to form the shape functions and construct wavelet-based elements. Timoshenko beam theory and Hamilton’s principle are adopted to formulate… More >

Displaying 121-130 on page 13 of 163. Per Page