Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (163)
  • Open Access

    ARTICLE

    A Wavelet Method for Solving Nonlinear Time-Dependent Partial Differential Equations

    Xiaojing Liu1, Jizeng Wang1,2, Youhe Zhou1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 225-238, 2013, DOI:10.32604/cmes.2013.094.225

    Abstract A wavelet method is proposed for solving a class of nonlinear timedependent partial differential equations. Following this method, the nonlinear equations are first transformed into a system of ordinary differential equations by using the modified wavelet Galerkin method recently developed by the authors. Then, the classical fourth-order explicit Runge-Kutta method is employed to solve the resulting system of ordinary differential equations. To justify the present method, the coupled viscous Burgers’ equations are solved as examples, results demonstrate that the proposed wavelet algorithm have a much better accuracy and efficiency than many existing numerical methods, and the order of convergence of… More >

  • Open Access

    ARTICLE

    The Second Kind Chebyshev Wavelet Method for Fractional Differential Equations with Variable Coefficients

    Baofeng Li1

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.3, pp. 187-202, 2013, DOI:10.3970/cmes.2013.093.187

    Abstract In this article, the second kind Chebyshev wavelet method is presented for solving a class of multi-order fractional differential equations (FDEs) with variable coefficients. We first construct the second kind Chebyshev wavelet, prove its convergence and then derive the operational matrix of fractional integration of the second kind Chebyshev wavelet. The operational matrix of fractional integration is utilized to reduce the fractional differential equations to a system of algebraic equations. In addition, illustrative examples are presented to demonstrate the efficiency and accuracy of the proposed method. More >

  • Open Access

    ARTICLE

    Numerical Approximate Solutions of Nonlinear Fredholm Integral Equations of Second Kind Using B-spline Wavelets and Variational Iteration Method

    P. K. Sahu1, S. Saha Ray1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.2, pp. 91-112, 2013, DOI:10.3970/cmes.2013.093.091

    Abstract In this paper, nonlinear integral equations have been solved numerically by using B-spline wavelet method and Variational Iteration Method (VIM). Compactly supported semi-orthogonal linear B-spline scaling and wavelet functions together with their dual functions are applied to approximate the solutions of nonlinear Fredholm integral equations of second kind. Comparisons are made between the variational Iteration Method (VIM) and linear B-spline wavelet method. Several examples are presented to compare the accuracy of linear B-spline wavelet method and Variational Iteration Method (VIM) with their exact solutions. More >

  • Open Access

    ARTICLE

    Construction of Operator-Orthogonal Wavelet-Based Elements for Adaptive Analysis of Thin Plate Bending Problems

    Y.M. Wang1,2, Q. Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.1, pp. 17-45, 2013, DOI:10.3970/cmes.2013.093.017

    Abstract A new kind of operator-orthogonal wavelet-based element is constructed based on the lifting scheme for adaptive analysis of thin plate bending problems. The operators of rectangular and skew thin plate bending problems and the sufficient condition for the operator-orthogonality of multilevel stiffness matrix are derived in the multiresolution finite element space. A new type of operator-orthogonal wavelets for thin plate bending problems is custom designed with high vanishing moments to be orthogonal with the scaling functions with respect to the operators of the problems, which ensures the independent solution of the problems in each scale. An adaptive operator-orthogonal wavelet method… More >

  • Open Access

    ARTICLE

    Wavelet solution of a class of two-dimensional nonlinear boundary value problems

    Xiaojing Liu1, Jizeng Wang1,2, Youhe Zhou1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 493-505, 2013, DOI:10.3970/cmes.2013.092.493

    Abstract By combining techniques of boundary extension and Coiflet-type wavelet expansion, an approximation scheme for a function defined on a two-dimensional bounded space is proposed. In this wavelet approximation, each expansion coefficient can be directly obtained by a single-point sampling of the function. And the boundary values and derivatives of the bounded function can be embedded in the modified wavelet basis. Based on this approximation scheme, a modified wavelet Galerkin method is developed for solving two-dimensional nonlinear boundary value problems, in which the interpolating property makes the solution of such strong nonlinear problems very effective and accurate. As an example, we… More >

  • Open Access

    ARTICLE

    Wavelet operational matrix method for solving fractional integral and differential equations of Bratu-type

    Lifeng Wang1, Yunpeng Ma1, Zhijun Meng1, Jun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 353-368, 2013, DOI:10.3970/cmes.2013.092.353

    Abstract In this paper, a wavelet operational matrix method based on the second kind Chebyshev wavelet is proposed to solve the fractional integral and differential equations of Bratu-type. The second kind Chebyshev wavelet operational matrix of fractional order integration is derived. A truncated second kind Chebyshev wavelet series together with the wavelet operational matrix is utilized to reduce the fractional integral and differential equations of Bratu-type to a system of nonlinear algebraic equations. The convergence and the error analysis of the method are also given. Two examples are included to verify the validity and applicability of the proposed approach. More >

  • Open Access

    ARTICLE

    On the Solution of Burgers-Huxley and Huxley Equation UsingWavelet Collocation Method

    S. Saha Ray1, A. K. Gupta1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.6, pp. 409-424, 2013, DOI:10.3970/cmes.2013.091.409

    Abstract In this paper, Haar wavelet method is applied to compute the numerical solutions of non-linear partial differential equations like Huxley and Burgers- Huxley equation. The approximate solutions of the Huxley and Burgers-Huxley equations are compared with the exact solutions. The present scheme is very simple, effective and convenient with small computational overhead. More >

  • Open Access

    ARTICLE

    Numerical solution of fractional partial differential equations using Haar wavelets

    Lifeng Wang1, Zhijun Meng1, Yunpeng Ma1, Zeyan Wu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.4, pp. 269-287, 2013, DOI:10.3970/cmes.2013.091.269

    Abstract In this paper, we present a computational method for solving a class of fractional partial differential equations which is based on Haar wavelets operational matrix of fractional order integration. We derive the Haar wavelets operational matrix of fractional order integration. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Finally, some examples are included to show the implementation and accuracy of the approach. More >

  • Open Access

    ARTICLE

    Numerical solution of nonlinear fractional integral differential equations by using the second kind Chebyshev wavelets

    Yiming Chen1, Lu Sun1, Xuan Li1, Xiaohong Fu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.5, pp. 359-378, 2013, DOI:10.3970/cmes.2013.090.359

    Abstract By using the differential operator matrix and the product operation matrix of the second kind Chebyshev wavelets, a class of nonlinear fractional integral-differential equations is transformed into nonlinear algebraic equations, which makes the solution process and calculation more simple. At the same time, the maximum absolute error is obtained through error analysis. It also can be used under the condition that no exact solution exists. Numerical examples verify the validity of the proposed method. More >

  • Open Access

    ARTICLE

    Numerical Solution of Space-Time Fractional Convection-Diffusion Equations with Variable Coefficients Using Haar Wavelets

    Jinxia Wei1, Yiming Chen1, Baofeng Li2, Mingxu Yi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.6, pp. 481-495, 2012, DOI:10.3970/cmes.2012.089.481

    Abstract In this paper, we present a computational method for solving a class of space-time fractional convection-diffusion equations with variable coefficients which is based on the Haar wavelets operational matrix of fractional order differentiation. Haar wavelets method is used because its computation is sample as it converts the original problem into Sylvester equation. Error analysis is given that shows efficiency of the method. Finally, a numerical example shows the implementation and accuracy of the approach. More >

Displaying 131-140 on page 14 of 163. Per Page